Abstract
We give a representation of any integer as a vector of the Witt ring W(Z_p) and relate it to the Fermat quotient q(n) = (n^(p−1) − 1)/p. Logarithms are introduced in order to establish an isomorphism betweenthe commutative unipotent groups 1+ pW(Z_p) and W(Z_p).
Lingua originale | English |
---|---|
pagine (da-a) | 1376-1387 |
Numero di pagine | 12 |
Rivista | Journal of Number Theory |
Volume | 128 |
Stato di pubblicazione | Published - 2008 |
All Science Journal Classification (ASJC) codes
- ???subjectarea.asjc.2600.2602???