Weil's theorem for perturbations of paranormal operators

Pietro Aiena, Jesús R. Guillen

Risultato della ricerca: Articlepeer review

22 Citazioni (Scopus)

Abstract

A bounded linear operator T ∈ L(X) on a Banach space X is said to satisfy "Weyl''s theorem" if the complement in the spectrum of the Weyl spectrum is the set of all isolated points of the spectrum which are eigenvalues of finite multiplicity. In this paper we show that if T is a paranormal operator on a Hilbert space, then T + K satisfies Weyl''s theorem for every algebraic operator K which commutes with T.
Lingua originaleEnglish
pagine (da-a)2443-2451
RivistaProceedings of the American Mathematical Society
Volume135
Stato di pubblicazionePublished - 2007

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.2600.2600???
  • ???subjectarea.asjc.2600.2604???

Fingerprint

Entra nei temi di ricerca di 'Weil's theorem for perturbations of paranormal operators'. Insieme formano una fingerprint unica.

Cita questo