Wavelets image analysis for Friction Stir Processed TiNi functional behavior characterization

Antonio Barcellona, Dina Palmeri

Risultato della ricerca: Article

1 Citazione (Scopus)

Abstract

A key topic regarding Ti Ni Shape Memory materials concerns the possibility to attain welded junctions that preserves the shape memory properties of material. Other research topic for SMAs regards the retention of the shape memory effect cyclic stability; in fact, good shape memory properties frequently decrease during SME cycling of material. A method able to improve the cyclic stability of TiNi shape memory effect is the grain refinement. Considering these above mentioned research topics, a solid state welding process, as the Friction Stir Welding, is thus attractive for SMA joining and it exhibits potentials for achieving welded joints affected by microstructural changes that preserve the shape memory properties and retain, furthermore, the cyclic stability of SME. The basic objective of this study was to investigate the feasibility of friction stir welding process to join TiNi shape memory alloy sheets flat memorized, preserving the TiNi shape memory behaviour. This aim has been pursued determining the influence of the thermomechanical modifications induced by Friction Stir Processing of TiNi sheets on the functional properties of material. Optical microscopic investigations of Friction Stir Processed material cross sections have been used to highlight the modified microstructure of processed zone. A proper image processing procedure has been performed in order to quantify the amount of martensitic phase and to detect its morphology modification along the processed region. Particularly each micrographic image at first has been denoised using the 2D Wavelet transform technique and successively a texture segmentation procedure allows evaluating the amount of the martensite and austenite phases and classifying the morphological changes of martensitic regions. The austenitic and martensitic transformation temperatures of material were investigated using a stress applied characterization method suitably set up to perform the whole stress-temperature material characterization.
Lingua originaleEnglish
pagine (da-a)8-16
Numero di pagine9
RivistaDefault journal
Volume109
Stato di pubblicazionePublished - 2015

Fingerprint

Shape memory effect
Image analysis
Friction
Friction stir welding
Austenitic transformations
Grain refinement
Martensitic transformations
Martensite
Joining
Austenite
Wavelet transforms
Welding
Welds
Image processing
Textures
Temperature
Microstructure
Processing

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Cita questo

@article{48aa1c1f41c149099b440f0b98598e6d,
title = "Wavelets image analysis for Friction Stir Processed TiNi functional behavior characterization",
abstract = "A key topic regarding Ti Ni Shape Memory materials concerns the possibility to attain welded junctions that preserves the shape memory properties of material. Other research topic for SMAs regards the retention of the shape memory effect cyclic stability; in fact, good shape memory properties frequently decrease during SME cycling of material. A method able to improve the cyclic stability of TiNi shape memory effect is the grain refinement. Considering these above mentioned research topics, a solid state welding process, as the Friction Stir Welding, is thus attractive for SMA joining and it exhibits potentials for achieving welded joints affected by microstructural changes that preserve the shape memory properties and retain, furthermore, the cyclic stability of SME. The basic objective of this study was to investigate the feasibility of friction stir welding process to join TiNi shape memory alloy sheets flat memorized, preserving the TiNi shape memory behaviour. This aim has been pursued determining the influence of the thermomechanical modifications induced by Friction Stir Processing of TiNi sheets on the functional properties of material. Optical microscopic investigations of Friction Stir Processed material cross sections have been used to highlight the modified microstructure of processed zone. A proper image processing procedure has been performed in order to quantify the amount of martensitic phase and to detect its morphology modification along the processed region. Particularly each micrographic image at first has been denoised using the 2D Wavelet transform technique and successively a texture segmentation procedure allows evaluating the amount of the martensite and austenite phases and classifying the morphological changes of martensitic regions. The austenitic and martensitic transformation temperatures of material were investigated using a stress applied characterization method suitably set up to perform the whole stress-temperature material characterization.",
keywords = "Friction Stir Processing, Shape memory alloy, Wavelets image analysis",
author = "Antonio Barcellona and Dina Palmeri",
year = "2015",
language = "English",
volume = "109",
pages = "8--16",
journal = "Default journal",

}

TY - JOUR

T1 - Wavelets image analysis for Friction Stir Processed TiNi functional behavior characterization

AU - Barcellona, Antonio

AU - Palmeri, Dina

PY - 2015

Y1 - 2015

N2 - A key topic regarding Ti Ni Shape Memory materials concerns the possibility to attain welded junctions that preserves the shape memory properties of material. Other research topic for SMAs regards the retention of the shape memory effect cyclic stability; in fact, good shape memory properties frequently decrease during SME cycling of material. A method able to improve the cyclic stability of TiNi shape memory effect is the grain refinement. Considering these above mentioned research topics, a solid state welding process, as the Friction Stir Welding, is thus attractive for SMA joining and it exhibits potentials for achieving welded joints affected by microstructural changes that preserve the shape memory properties and retain, furthermore, the cyclic stability of SME. The basic objective of this study was to investigate the feasibility of friction stir welding process to join TiNi shape memory alloy sheets flat memorized, preserving the TiNi shape memory behaviour. This aim has been pursued determining the influence of the thermomechanical modifications induced by Friction Stir Processing of TiNi sheets on the functional properties of material. Optical microscopic investigations of Friction Stir Processed material cross sections have been used to highlight the modified microstructure of processed zone. A proper image processing procedure has been performed in order to quantify the amount of martensitic phase and to detect its morphology modification along the processed region. Particularly each micrographic image at first has been denoised using the 2D Wavelet transform technique and successively a texture segmentation procedure allows evaluating the amount of the martensite and austenite phases and classifying the morphological changes of martensitic regions. The austenitic and martensitic transformation temperatures of material were investigated using a stress applied characterization method suitably set up to perform the whole stress-temperature material characterization.

AB - A key topic regarding Ti Ni Shape Memory materials concerns the possibility to attain welded junctions that preserves the shape memory properties of material. Other research topic for SMAs regards the retention of the shape memory effect cyclic stability; in fact, good shape memory properties frequently decrease during SME cycling of material. A method able to improve the cyclic stability of TiNi shape memory effect is the grain refinement. Considering these above mentioned research topics, a solid state welding process, as the Friction Stir Welding, is thus attractive for SMA joining and it exhibits potentials for achieving welded joints affected by microstructural changes that preserve the shape memory properties and retain, furthermore, the cyclic stability of SME. The basic objective of this study was to investigate the feasibility of friction stir welding process to join TiNi shape memory alloy sheets flat memorized, preserving the TiNi shape memory behaviour. This aim has been pursued determining the influence of the thermomechanical modifications induced by Friction Stir Processing of TiNi sheets on the functional properties of material. Optical microscopic investigations of Friction Stir Processed material cross sections have been used to highlight the modified microstructure of processed zone. A proper image processing procedure has been performed in order to quantify the amount of martensitic phase and to detect its morphology modification along the processed region. Particularly each micrographic image at first has been denoised using the 2D Wavelet transform technique and successively a texture segmentation procedure allows evaluating the amount of the martensite and austenite phases and classifying the morphological changes of martensitic regions. The austenitic and martensitic transformation temperatures of material were investigated using a stress applied characterization method suitably set up to perform the whole stress-temperature material characterization.

KW - Friction Stir Processing

KW - Shape memory alloy

KW - Wavelets image analysis

UR - http://hdl.handle.net/10447/147016

M3 - Article

VL - 109

SP - 8

EP - 16

JO - Default journal

JF - Default journal

ER -