Water diffusion and swelling stresses in ionizing radiation cured epoxy matrices

Risultato della ricerca: Article

2 Citazioni (Scopus)

Abstract

In this work a DGEBF epoxy monomer was cured by electron beam radiation in the presence of an iodonium salt and the obtained system was hydrothermally aged as such and also after a thermal treatment, in order to obtain two systems having different uniformity in the cross-linking degree. On both systems, the transient stress field arising from swelling was measured and monitored by an optical Photoelastic technique and the results were commented with reference to a thermally cured epoxy system containing the same monomer and already discussed in a previous work. Beam samples with identical dimensions, obtained from the irradiated systems, have been aged at 80 °C in water, and characterised by Gravimetric and DMTA tests. The results are compared also with already reported swelling behaviour of similar thermally cured systems. It is observed that the different curing techniques (radiation curing, radiation curing followed by thermal curing and thermal curing) determine a different network structure and a different water chemical affinity, which influence the amounts of absorbed/desorbed water, and the relative amounts of bonded/free water. Such differences affect the swelling behaviour, and then the transient stress field. Photoelastic Stress Analysis has allowed to evaluate the evolving stress field, providing a different point of view on the investigation of the material transformations associated to water diffusion.
Lingua originaleEnglish
pagine (da-a)137-145
Numero di pagine9
RivistaDefault journal
Stato di pubblicazionePublished - 2017

Fingerprint

Ionizing radiation
curing
ionizing radiation
swelling
Swelling
Curing
Water
stress distribution
matrices
water
Radiation
monomers
Monomers
stress analysis
radiation
Stress analysis
affinity
Electron beams
Salts
Heat treatment

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Mechanics of Materials
  • Polymers and Plastics
  • Materials Chemistry

Cita questo

@article{9ce8ea39008e40c0aa18c46c84bb254d,
title = "Water diffusion and swelling stresses in ionizing radiation cured epoxy matrices",
abstract = "In this work a DGEBF epoxy monomer was cured by electron beam radiation in the presence of an iodonium salt and the obtained system was hydrothermally aged as such and also after a thermal treatment, in order to obtain two systems having different uniformity in the cross-linking degree. On both systems, the transient stress field arising from swelling was measured and monitored by an optical Photoelastic technique and the results were commented with reference to a thermally cured epoxy system containing the same monomer and already discussed in a previous work. Beam samples with identical dimensions, obtained from the irradiated systems, have been aged at 80 °C in water, and characterised by Gravimetric and DMTA tests. The results are compared also with already reported swelling behaviour of similar thermally cured systems. It is observed that the different curing techniques (radiation curing, radiation curing followed by thermal curing and thermal curing) determine a different network structure and a different water chemical affinity, which influence the amounts of absorbed/desorbed water, and the relative amounts of bonded/free water. Such differences affect the swelling behaviour, and then the transient stress field. Photoelastic Stress Analysis has allowed to evaluate the evolving stress field, providing a different point of view on the investigation of the material transformations associated to water diffusion.",
author = "Clelia Dispenza and Sabina Alessi and Giuseppe Spadaro and Andrea Toscano and Giuseppe Pitarresi",
year = "2017",
language = "English",
pages = "137--145",
journal = "Default journal",

}

TY - JOUR

T1 - Water diffusion and swelling stresses in ionizing radiation cured epoxy matrices

AU - Dispenza, Clelia

AU - Alessi, Sabina

AU - Spadaro, Giuseppe

AU - Toscano, Andrea

AU - Pitarresi, Giuseppe

PY - 2017

Y1 - 2017

N2 - In this work a DGEBF epoxy monomer was cured by electron beam radiation in the presence of an iodonium salt and the obtained system was hydrothermally aged as such and also after a thermal treatment, in order to obtain two systems having different uniformity in the cross-linking degree. On both systems, the transient stress field arising from swelling was measured and monitored by an optical Photoelastic technique and the results were commented with reference to a thermally cured epoxy system containing the same monomer and already discussed in a previous work. Beam samples with identical dimensions, obtained from the irradiated systems, have been aged at 80 °C in water, and characterised by Gravimetric and DMTA tests. The results are compared also with already reported swelling behaviour of similar thermally cured systems. It is observed that the different curing techniques (radiation curing, radiation curing followed by thermal curing and thermal curing) determine a different network structure and a different water chemical affinity, which influence the amounts of absorbed/desorbed water, and the relative amounts of bonded/free water. Such differences affect the swelling behaviour, and then the transient stress field. Photoelastic Stress Analysis has allowed to evaluate the evolving stress field, providing a different point of view on the investigation of the material transformations associated to water diffusion.

AB - In this work a DGEBF epoxy monomer was cured by electron beam radiation in the presence of an iodonium salt and the obtained system was hydrothermally aged as such and also after a thermal treatment, in order to obtain two systems having different uniformity in the cross-linking degree. On both systems, the transient stress field arising from swelling was measured and monitored by an optical Photoelastic technique and the results were commented with reference to a thermally cured epoxy system containing the same monomer and already discussed in a previous work. Beam samples with identical dimensions, obtained from the irradiated systems, have been aged at 80 °C in water, and characterised by Gravimetric and DMTA tests. The results are compared also with already reported swelling behaviour of similar thermally cured systems. It is observed that the different curing techniques (radiation curing, radiation curing followed by thermal curing and thermal curing) determine a different network structure and a different water chemical affinity, which influence the amounts of absorbed/desorbed water, and the relative amounts of bonded/free water. Such differences affect the swelling behaviour, and then the transient stress field. Photoelastic Stress Analysis has allowed to evaluate the evolving stress field, providing a different point of view on the investigation of the material transformations associated to water diffusion.

UR - http://hdl.handle.net/10447/241423

M3 - Article

SP - 137

EP - 145

JO - Default journal

JF - Default journal

ER -