Varieties of almost polynomial growth: classifying their subvarieties

Daniela La Mattina, Daniela La Mattina

Risultato della ricerca: Articlepeer review

24 Citazioni (Scopus)

Abstract

Let G be the infinite dimensional Grassmann algebra over a field F of characteristic zero and UT2 the algebra of 2 x 2 upper triangular matrices over F. The relevance of these algebras in PI-theory relies on the fact that they generate the only two varieties of almost polynomial growth, i.e., they grow exponentially but any proper subvariety grows polynomially. In this paper we completely classify, up to PI-equivalence, the associative algebras A such that A is an element of Var(G) or A is an element of Var(UT2).
Lingua originaleEnglish
pagine (da-a)185-203
Numero di pagine19
RivistaManuscripta Mathematica
Volume123
Stato di pubblicazionePublished - 2007

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.2600.2600???

Fingerprint Entra nei temi di ricerca di 'Varieties of almost polynomial growth: classifying their subvarieties'. Insieme formano una fingerprint unica.

Cita questo