TY - JOUR
T1 - Unsupervised tissue classification of brain MR images for voxel-based morphometry analysis
AU - Ardizzone, Edoardo
AU - Vitabile, Salvatore
AU - Comelli, Albert
AU - Agnello, Luca
PY - 2016
Y1 - 2016
N2 - In this article, a fully unsupervised method for brain tissue segmentation of T1-weighted MRI 3D volumes is proposed. The method uses the Fuzzy C-Means (FCM) clustering algorithm and a Fully Connected Cascade Neural Network (FCCNN) classifier. Traditional manual segmentation methods require neuro-radiological expertise and significant time while semiautomatic methods depend on parameter's setup and trial-and-error methodologies that may lead to high intraoperator/interoperator variability. The proposed method selects the most useful MRI data according to FCM fuzziness values and trains the FCCNN to learn to classify brain’ tissues into White Matter, Gray Matter, and Cerebro-Spinal Fluid in an unsupervised way. The method has been tested on the IBSR dataset, on the BrainWeb Phantom, on the BrainWeb SBD dataset, and on the real dataset “University of Palermo Policlinico Hospital” (UPPH), Italy. Sensitivity, Specificity, Dice and F-Factor scores have been calculated on the IBSR and BrainWeb datasets segmented using the proposed method, the FCM algorithm, and two state-of-the-art brain segmentation software packages (FSL and SPM) to prove the effectiveness of the proposed approach. A qualitative evaluation involving a group of five expert radiologists has been performed segmenting the real dataset using the proposed approach and the comparison algorithms. Finally, a usability analysis on the proposed method and reference methods has been carried out from the same group of expert radiologists. The achieved results show that the segmentations of the proposed method are comparable or better than the reference methods with a better usability and degree of acceptance.
AB - In this article, a fully unsupervised method for brain tissue segmentation of T1-weighted MRI 3D volumes is proposed. The method uses the Fuzzy C-Means (FCM) clustering algorithm and a Fully Connected Cascade Neural Network (FCCNN) classifier. Traditional manual segmentation methods require neuro-radiological expertise and significant time while semiautomatic methods depend on parameter's setup and trial-and-error methodologies that may lead to high intraoperator/interoperator variability. The proposed method selects the most useful MRI data according to FCM fuzziness values and trains the FCCNN to learn to classify brain’ tissues into White Matter, Gray Matter, and Cerebro-Spinal Fluid in an unsupervised way. The method has been tested on the IBSR dataset, on the BrainWeb Phantom, on the BrainWeb SBD dataset, and on the real dataset “University of Palermo Policlinico Hospital” (UPPH), Italy. Sensitivity, Specificity, Dice and F-Factor scores have been calculated on the IBSR and BrainWeb datasets segmented using the proposed method, the FCM algorithm, and two state-of-the-art brain segmentation software packages (FSL and SPM) to prove the effectiveness of the proposed approach. A qualitative evaluation involving a group of five expert radiologists has been performed segmenting the real dataset using the proposed approach and the comparison algorithms. Finally, a usability analysis on the proposed method and reference methods has been carried out from the same group of expert radiologists. The achieved results show that the segmentations of the proposed method are comparable or better than the reference methods with a better usability and degree of acceptance.
KW - brain images segmentation
KW - fuzzy clustering
KW - neural networks
KW - unsupervised tissues classification
KW - voxel-based morphometry
KW - brain images segmentation
KW - fuzzy clustering
KW - neural networks
KW - unsupervised tissues classification
KW - voxel-based morphometry
UR - http://hdl.handle.net/10447/211898
UR - http://www.interscience.wiley.com/jpages/0899-9457
M3 - Article
SN - 0899-9457
VL - 26
SP - 136
EP - 150
JO - International Journal of Imaging Systems and Technology
JF - International Journal of Imaging Systems and Technology
ER -