Abstract
Let Y be a smooth, projective curve of genus g>=1. Let H^0_{d,A}(Y)be the Hurwitz space which parametrizes coverings p:X --> Y ofdegree d simply branched in n=2e points, such that the monodromy group is S_d and det(P_*O_X/O_Y) is isomorphic to a fixed line bundle A^{-1} of degree e. We prove that when d=3, 4 or 5 and n is sufficiently large (precise bounds are given),these Hurwitz spaces are unirational. If in addition (e,2)=1 (when d=3), (e,6)=1 (when d=4) and (e,10)=1 (when d=5), then these Hurwitz spaces are rational.
Lingua originale | English |
---|---|
pagine (da-a) | 3006-3052 |
Numero di pagine | 47 |
Rivista | International Mathematics Research Notices |
Volume | 2013 |
Stato di pubblicazione | Published - 2013 |
All Science Journal Classification (ASJC) codes
- ???subjectarea.asjc.2600.2600???