Uncertainty evaluation in load flow analysis: real MV distribution networks case studies

Di Cara, D.; Tinè, G.

Risultato della ricerca: Paper

Abstract

This work investigates the measurement uncertainty impact on load flow analysis in medium voltage (MV) distribution networks. The considered algorithm is a simplified load flow algorithm (LFA), developed by authors, which is based on the load power measurements at each secondary substation and one voltage measurement at the slack bus (i.e. the voltage at the MV bus bars of the primary substation). In the viewpoint of a real implementation, to reduce monitoring system costs, the LFA makes use of low voltage (LV) load power measurements for all the substations except those of MV users, where MV transducers are usually already installed. The uncertainties on LFA input quantities (load powers and slack bus voltage) are calculated, considering actual values of loads powers and currents and the accuracy specifications of measurement instruments installed in distribution network. Starting from this, power flows uncertainties are obtained applying a Monte Carlo analysis. The analysis has been carried out for real case studies; i.e. the distribution networks of Favignana and Ustica Islands. The following results refer to the Favignana case.
Lingua originaleEnglish
Stato di pubblicazionePublished - 2018

Cita questo

Uncertainty evaluation in load flow analysis: real MV distribution networks case studies. / Di Cara, D.; Tinè, G.

2018.

Risultato della ricerca: Paper

@conference{1a33ef3672894708b8d7627d57fc7dea,
title = "Uncertainty evaluation in load flow analysis: real MV distribution networks case studies",
abstract = "This work investigates the measurement uncertainty impact on load flow analysis in medium voltage (MV) distribution networks. The considered algorithm is a simplified load flow algorithm (LFA), developed by authors, which is based on the load power measurements at each secondary substation and one voltage measurement at the slack bus (i.e. the voltage at the MV bus bars of the primary substation). In the viewpoint of a real implementation, to reduce monitoring system costs, the LFA makes use of low voltage (LV) load power measurements for all the substations except those of MV users, where MV transducers are usually already installed. The uncertainties on LFA input quantities (load powers and slack bus voltage) are calculated, considering actual values of loads powers and currents and the accuracy specifications of measurement instruments installed in distribution network. Starting from this, power flows uncertainties are obtained applying a Monte Carlo analysis. The analysis has been carried out for real case studies; i.e. the distribution networks of Favignana and Ustica Islands. The following results refer to the Favignana case.",
author = "{Di Cara, D.; Tin{\`e}, G.} and Salvatore Nuccio and Antonio Cataliotti and Valentina Cosentino and Salvatore Guaiana and Nicola Panzavecchia",
year = "2018",
language = "English",

}

TY - CONF

T1 - Uncertainty evaluation in load flow analysis: real MV distribution networks case studies

AU - Di Cara, D.; Tinè, G.

AU - Nuccio, Salvatore

AU - Cataliotti, Antonio

AU - Cosentino, Valentina

AU - Guaiana, Salvatore

AU - Panzavecchia, Nicola

PY - 2018

Y1 - 2018

N2 - This work investigates the measurement uncertainty impact on load flow analysis in medium voltage (MV) distribution networks. The considered algorithm is a simplified load flow algorithm (LFA), developed by authors, which is based on the load power measurements at each secondary substation and one voltage measurement at the slack bus (i.e. the voltage at the MV bus bars of the primary substation). In the viewpoint of a real implementation, to reduce monitoring system costs, the LFA makes use of low voltage (LV) load power measurements for all the substations except those of MV users, where MV transducers are usually already installed. The uncertainties on LFA input quantities (load powers and slack bus voltage) are calculated, considering actual values of loads powers and currents and the accuracy specifications of measurement instruments installed in distribution network. Starting from this, power flows uncertainties are obtained applying a Monte Carlo analysis. The analysis has been carried out for real case studies; i.e. the distribution networks of Favignana and Ustica Islands. The following results refer to the Favignana case.

AB - This work investigates the measurement uncertainty impact on load flow analysis in medium voltage (MV) distribution networks. The considered algorithm is a simplified load flow algorithm (LFA), developed by authors, which is based on the load power measurements at each secondary substation and one voltage measurement at the slack bus (i.e. the voltage at the MV bus bars of the primary substation). In the viewpoint of a real implementation, to reduce monitoring system costs, the LFA makes use of low voltage (LV) load power measurements for all the substations except those of MV users, where MV transducers are usually already installed. The uncertainties on LFA input quantities (load powers and slack bus voltage) are calculated, considering actual values of loads powers and currents and the accuracy specifications of measurement instruments installed in distribution network. Starting from this, power flows uncertainties are obtained applying a Monte Carlo analysis. The analysis has been carried out for real case studies; i.e. the distribution networks of Favignana and Ustica Islands. The following results refer to the Favignana case.

UR - http://hdl.handle.net/10447/339965

M3 - Paper

ER -