Tunable Polarons in Bose-Einstein Condensates

Gioacchino Massimo Palma, Compagno, Angelakis, De Chiara

Risultato della ricerca: Article

8 Citazioni (Scopus)

Abstract

A toolbox for the quantum simulation of polarons in ultracold atoms is presented. Motivated by the impressive experimental advances in the area of ultracold atomic mixtures, we theoretically study the problem of ultracold atomic impurities immersed in a Bose-Einstein condensate mixture (BEC). The coupling between impurity and BEC gives rise to the formation of polarons whose mutual interaction can be effectively tuned using an external laser driving a quasi-resonant Raman transition between the BEC components. Our scheme allows one to change the effective interactions between polarons in different sites from attractive to zero. This is achieved by simply changing the intensity and the frequency of the two lasers. Such arrangement opens new avenues for the study of strongly correlated condensed matter models in ultracold gases.
Lingua originaleEnglish
pagine (da-a)2355-
Numero di pagine0
RivistaScientific Reports
Volume7
Stato di pubblicazionePublished - 2017

All Science Journal Classification (ASJC) codes

  • General

Fingerprint Entra nei temi di ricerca di 'Tunable Polarons in Bose-Einstein Condensates'. Insieme formano una fingerprint unica.

Cita questo