TY - JOUR
T1 - Tidal Volume Estimation during Helmet Noninvasive Ventilation: an Experimental Feasibility Study
AU - Cortegiani, Andrea
AU - Gregoretti, Cesare
AU - Palmeri Di Villalba, Cesira
AU - Garofalo, Eugenio
AU - Bruni, Andrea
AU - Navalesi, Paolo
AU - Misseri, Giovanni
AU - Accurso, Giuseppe
AU - Sabella, Ignazio
AU - Ippolito, Mariachiara
PY - 2019
Y1 - 2019
N2 - We performed a bench (BS) and human (HS) study to test the hypothesis that estimation of tidal volume (VT) during noninvasive helmet pressure support ventilation (nHPSV) would be possible using a turbine driven ventilator (TDV) coupled with an intentional leak single-limb vented circuit. During the BS a mannequin was connected to a lung simulator (LS) and at different conditions of respiratory mechanics, positive end expiratory pressure (PEEP) levels and leaks (30, 50 and 80 L/min). All differences were within the 95% limits of agreement (LoA) in all conditions in the Bland-Altman plot. The overall bias (difference between VT measured by TDV and LS) was 35 ml (95% LoA 10 to 57 ml), 15 ml (95% LoA -40 to 70 ml), 141 ml (95% LoA 109 to 173 ml) in the normal, restrictive and obstructive conditions. The bias at different leaks flow in normal condition was 29 ml (95% LoA 19 to 38 ml). In the HS four healthy volunteers using nHPSV had a pneumotachograph (P) inserted through a mouthpiece to measure subject's VT.The bias showed a scarce clinical relevance. In conclusions, VT estimation seems to be feasible and accurate in all conditions but the obstructive one. Additional leaks seem not to affect VT reliability.
AB - We performed a bench (BS) and human (HS) study to test the hypothesis that estimation of tidal volume (VT) during noninvasive helmet pressure support ventilation (nHPSV) would be possible using a turbine driven ventilator (TDV) coupled with an intentional leak single-limb vented circuit. During the BS a mannequin was connected to a lung simulator (LS) and at different conditions of respiratory mechanics, positive end expiratory pressure (PEEP) levels and leaks (30, 50 and 80 L/min). All differences were within the 95% limits of agreement (LoA) in all conditions in the Bland-Altman plot. The overall bias (difference between VT measured by TDV and LS) was 35 ml (95% LoA 10 to 57 ml), 15 ml (95% LoA -40 to 70 ml), 141 ml (95% LoA 109 to 173 ml) in the normal, restrictive and obstructive conditions. The bias at different leaks flow in normal condition was 29 ml (95% LoA 19 to 38 ml). In the HS four healthy volunteers using nHPSV had a pneumotachograph (P) inserted through a mouthpiece to measure subject's VT.The bias showed a scarce clinical relevance. In conclusions, VT estimation seems to be feasible and accurate in all conditions but the obstructive one. Additional leaks seem not to affect VT reliability.
UR - http://hdl.handle.net/10447/386117
M3 - Article
SN - 2045-2322
VL - 9
SP - 1
EP - 8
JO - Scientific Reports
JF - Scientific Reports
ER -