Three-dimensional multiple-particle tracking with nanometric precision over tunable axial ranges

Giuseppe Sancataldo, Martí Duocastella, Luca Lanzanò, Tiziana Ravasenga, Giuseppe Sancataldo, Lorenzo Scipioni, Andrea Barberis, Alberto Diaspro

Risultato della ricerca: Articlepeer review

21 Citazioni (Scopus)

Abstract

The precise localization of nanometric objects in three dimensions is essential to identify functional diffusion mechanisms in complex systems at the cellular or molecular level. However, most optical methods can achieve high temporal resolution and high localization precision only in two dimensions or over a limited axial (z) range. Here we develop a novel wide-field detection system based on an electrically tunable lens that can track multiple individual nanoscale emitters in three dimensions over a tunable axial range with nanometric localization precision. The optical principle of the technique is based on the simultaneous acquisition of two images with an extended depth of field while encoding the z position of the emitters via a lateral shift between images. We provide a theoretical framework for this approach and demonstrate tracking of free diffusing beads and GABAA receptors in live neurons. This approach allows getting nanometric localization precision up to an axial range above 10 µm with a high numerical aperture lens-quadruple that of a typical 3D tracking system. Synchronization or complex fitting procedures are not requested here, which leads to a suitable architecture for localizing single molecules in four dimensions, namely, three dimensions in real-time.
Lingua originaleEnglish
pagine (da-a)367-373
Numero di pagine7
RivistaOptica
Volume4
Stato di pubblicazionePublished - 2017

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics

Cita questo