Thermal analysis and new insights to support decision making in retrofit and relaxation of heat exchanger networks

Risultato della ricerca: Articlepeer review

38 Citazioni (Scopus)


Pinch analysis offers a rational framework for identifying energy saving targets and designing efficient heat recovery networks, especially in process industry. Several scientists have contributed to improve and automate the original pinch method over the last decades, increasing its capability to deal with a number of specific issues; the expertise of the analyst, however, remains determinant in achieving optimal results. In this paper a procedure for retrofit of existing networks is proposed, based on an integrate use of several techniques (either existing or innovative). The diagnosis of the existing network and of a “Minimum Energy Requirement” configuration emerges as a useful preliminary instrument for the retrofit study. Then, an innovative spider-type diagram is presented to identify a hierarchic order among a set of retrofit topologies and the most promising relaxation paths for each network topology. The procedure is aimed at offering a conceptual-interpretative approach to energy analysts, to identify preferential routes in networks’ retrofit (and exclude the least promising improvement directions of the existing network); it should be therefore conceived as alternative to algorithms for automatic optimization of heat exchanger networks. The focus is mainly put on the energetic performance of the different schemes (evaluated by thermal analysis of the involved heat exchangers), but the methodology finally enables the energy analyst to identify solutions achieving near-minimum total costs.
Lingua originaleEnglish
pagine (da-a)3479-3499
Numero di pagine21
RivistaApplied Thermal Engineering
Stato di pubblicazionePublished - 2011

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.2100.2102???
  • ???subjectarea.asjc.2200.2209???


Entra nei temi di ricerca di 'Thermal analysis and new insights to support decision making in retrofit and relaxation of heat exchanger networks'. Insieme formano una fingerprint unica.

Cita questo