The trophic role of the macrophyte Cymodocea nodosa (Ucria) Asch. in a Mediterranean saltworks: Evidence from carbon and nitrogen stable isotope ratios

Risultato della ricerca: Article

16 Citazioni (Scopus)


A multiple stable isotope analysis (δ13C and δ15N) was used to determine the trophic role of the seagrass Cymodocea nodosa (Ucria) Asch. for consumers in a Mediterranean saltworks. Stable carbon and nitrogen isotope ratios performed on primary producers and consumers in February and July 1999 showed that C. nodosa is not a direct dietary source via grazing. No animal presented carbon values as enriched as the seagrass (-7.8‰). The trophic role of Cymodocea occurs through the detritus route via SOM. Sedimentary organic matter (SOM) (δ13C = -16.5‰) seems to be a mixture of particulate organic matter (δ13C = -19.0‰), algae (δ13C = -18.6‰) and seagrass detritus (δ13C = -7.7‰). The results of a mixing model suggest that Cymodocea detritus contribution to SOM varied temporally, a greater role in February than in July. In July the enriched values of both stable carbon and nitrogen isotopes of several primary producers and consumers in comparison with February (about +2‰ for primary producers, +3.5‰ for invertebrates and +1‰ for fish) suggest that less depleted carbon and nitrogen (probably from seagrass detritus) influence food web structure. Cymodocea has an important structuring role as seagrass blades are extensively colonised by a complex vegetal community which provides food and habitats for invertebrates. The δ13C of the animals suggests that epiphytes may represent an important ultimate organic matter source together with SOM.
Lingua originaleEnglish
pagine (da-a)1369-1378
Numero di pagine10
RivistaBulletin of Marine Science
Stato di pubblicazionePublished - 2002


All Science Journal Classification (ASJC) codes

  • Oceanography
  • Aquatic Science

Cita questo