Abstract
Nanogels are very promising biomedical nanodevices. The classic “radiation chemistry-based” approach to synthetize nanogels consists in the irradiation with pulsed electron beams of dilute, N 2 O-saturated, aqueous solutions of water-soluble polymers of the “crosslinking type”. Nanogels with controlled size and properties are produced in a single irradiation step with no recourse to initiators, organic solvents and surfactants. This paper combines experimental syntheses, performed with two e-beam irradiation setups and dose-ranges, starting from poly(N-vinyl pyrrolidone) solutions of various concentrations, both in N 2 O-saturated and air-saturated initial conditions, with the numerical simulations of the radiation chemistry of aqueous solutions of a radical scavanger exposed to the same irradiation conditions used in the experiments. This approach provides a methodology to predict the impact of system and irradiation conditions on the water radiation chemistry, which in turn affect the nanogel features in terms of molecular and physico-chemical properties. In particular, the crucial role of initial and transient concentration of molecular oxygen is revealed. This work also proposes a very simple and effective methodology to quantitatively measure the double bonds formed in the systems from disporportionation and chain scission reactions, competing with inter-/intra-molecular crosslinking.
Lingua originale | English |
---|---|
pagine (da-a) | 164-175 |
Numero di pagine | 12 |
Rivista | European Polymer Journal |
Volume | 114 |
Stato di pubblicazione | Published - 2019 |
All Science Journal Classification (ASJC) codes
- ???subjectarea.asjc.3100.3100???
- ???subjectarea.asjc.1600.1605???
- ???subjectarea.asjc.2500.2507???
- ???subjectarea.asjc.2500.2505???