The resemblance of an autocorrelation functionto a power spectrum density for a spike train ofan auditory model

Bernardo Spagnolo, Yu. V. Ushakov, Dubkov

Risultato della ricerca: Chapter

Abstract

In this work we develop an analytical approach for calculation of the all-order interspike interval density (AOISID), show its connection with the autocorrelation function, and try to explain the discovered resemblance of AOISID to the power spectrum of the same spike train.
Lingua originaleEnglish
Titolo della pubblicazione ospitePHYSICS, COMPUTATION, AND THE MIND - ADVANCES AND CHALLENGES AT INTERFACES
Pagine138-141
Numero di pagine4
Stato di pubblicazionePublished - 2013

Serie di pubblicazioni

NomeBook Series: AIP Conference Proceedings

Fingerprint

spikes
autocorrelation
power spectra
intervals

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Cita questo

Spagnolo, B., Ushakov, Y. V., & Dubkov (2013). The resemblance of an autocorrelation functionto a power spectrum density for a spike train ofan auditory model. In PHYSICS, COMPUTATION, AND THE MIND - ADVANCES AND CHALLENGES AT INTERFACES (pagg. 138-141). (Book Series: AIP Conference Proceedings).

The resemblance of an autocorrelation functionto a power spectrum density for a spike train ofan auditory model. / Spagnolo, Bernardo; Ushakov, Yu. V.; Dubkov.

PHYSICS, COMPUTATION, AND THE MIND - ADVANCES AND CHALLENGES AT INTERFACES. 2013. pag. 138-141 (Book Series: AIP Conference Proceedings).

Risultato della ricerca: Chapter

Spagnolo, B, Ushakov, YV & Dubkov 2013, The resemblance of an autocorrelation functionto a power spectrum density for a spike train ofan auditory model. in PHYSICS, COMPUTATION, AND THE MIND - ADVANCES AND CHALLENGES AT INTERFACES. Book Series: AIP Conference Proceedings, pagg. 138-141.
Spagnolo B, Ushakov YV, Dubkov. The resemblance of an autocorrelation functionto a power spectrum density for a spike train ofan auditory model. In PHYSICS, COMPUTATION, AND THE MIND - ADVANCES AND CHALLENGES AT INTERFACES. 2013. pag. 138-141. (Book Series: AIP Conference Proceedings).
Spagnolo, Bernardo ; Ushakov, Yu. V. ; Dubkov. / The resemblance of an autocorrelation functionto a power spectrum density for a spike train ofan auditory model. PHYSICS, COMPUTATION, AND THE MIND - ADVANCES AND CHALLENGES AT INTERFACES. 2013. pagg. 138-141 (Book Series: AIP Conference Proceedings).
@inbook{ed61867f4ecd4e49ab8ba5886310a8b8,
title = "The resemblance of an autocorrelation functionto a power spectrum density for a spike train ofan auditory model",
abstract = "In this work we develop an analytical approach for calculation of the all-order interspike interval density (AOISID), show its connection with the autocorrelation function, and try to explain the discovered resemblance of AOISID to the power spectrum of the same spike train.",
author = "Bernardo Spagnolo and Ushakov, {Yu. V.} and Dubkov",
year = "2013",
language = "English",
isbn = "978-0-7354-1128-9",
series = "Book Series: AIP Conference Proceedings",
pages = "138--141",
booktitle = "PHYSICS, COMPUTATION, AND THE MIND - ADVANCES AND CHALLENGES AT INTERFACES",

}

TY - CHAP

T1 - The resemblance of an autocorrelation functionto a power spectrum density for a spike train ofan auditory model

AU - Spagnolo, Bernardo

AU - Ushakov, Yu. V.

AU - Dubkov, null

PY - 2013

Y1 - 2013

N2 - In this work we develop an analytical approach for calculation of the all-order interspike interval density (AOISID), show its connection with the autocorrelation function, and try to explain the discovered resemblance of AOISID to the power spectrum of the same spike train.

AB - In this work we develop an analytical approach for calculation of the all-order interspike interval density (AOISID), show its connection with the autocorrelation function, and try to explain the discovered resemblance of AOISID to the power spectrum of the same spike train.

UR - http://hdl.handle.net/10447/74705

M3 - Chapter

SN - 978-0-7354-1128-9

T3 - Book Series: AIP Conference Proceedings

SP - 138

EP - 141

BT - PHYSICS, COMPUTATION, AND THE MIND - ADVANCES AND CHALLENGES AT INTERFACES

ER -