The Monod-Wyman-Changeux allosteric model accounts for the quaternary transition dynamics in wild type and a recombinant mutant human hemoglobin

Matteo Levantino, Antonio Cupane, Giorgio Schiro', Chiara Ardiccioni, Maurizio Brunori, Beatrice Vallone, Marco Cammarata, Alessandro Spilotros

Risultato della ricerca: Article

23 Citazioni (Scopus)

Abstract

The acknowledged success of the Monod-Wyman-Changeux (MWC) allosteric model stems from its efficacy in accounting for the functional behavior of many complex proteins starting with hemoglobin (the paradigmatic case) and extending to channels and receptors. The kinetic aspects of the allosteric model, however, have been often neglected, with the exception of hemoglobin and a few other proteins where conformational relaxations can be triggered by a short and intense laser pulse, and monitored by time-resolved optical spectroscopy. Only recently the application of time-resolved wide-angle X-ray scattering (TR-WAXS), a direct structurally sensitive technique, unveiled the time scale of hemoglobin quaternary structural transition. In order to test the generality of the MWC kinetic model, we carried out a TR-WAXS investigation in parallel on adult human hemoglobin and on a recombinant protein (HbYQ) carrying two mutations at the active site [Leu(B10)Tyr and His(E7)Gln]. HbYQ seemed an ideal test because, although exhibiting allosteric properties, its kinetic and structural properties are different from adult human hemoglobin. The structural dynamics of HbYQ unveiled by TR-WAXS can be quantitatively accounted for by the MWC kinetic model. Interestingly, the main structural change associated with the R–T allosteric transition (i.e., the relative rotation and translation of the dimers) is approximately 10-fold slower in HbYQ, and the drop in the allosteric transition rate with ligand saturation is steeper. Our results extend the general validity of the MWC kinetic model and reveal peculiar thermodynamic properties of HbYQ. A possible structural interpretation of the characteristic kinetic behavior of HbYQ is also discussed.
Lingua originaleEnglish
pagine (da-a)14894-14899
Numero di pagine6
RivistaProceedings of the National Academy of Sciences of the United States of America
Volume109
Stato di pubblicazionePublished - 2012

    Fingerprint

All Science Journal Classification (ASJC) codes

  • General

Cita questo