TY - JOUR
T1 - Suppressive role exerted by microRNA-29b-1-5p in triple negative breast cancer through SPIN1 regulation
AU - Di Fiore, Riccardo
AU - Vento, Renza
AU - Carlisi, Daniela
AU - De Blasio, Anna
AU - Degaetano, James
AU - Pentimalli, Francesca
AU - Saliba, Christian
AU - Baldacchino, Shawn
AU - Debono, Joseph
AU - Caruana-Dingli, Gordon
AU - Vento, Renza
AU - Tesoriere, Giovanni
AU - Giordano, Antonio
AU - Scerri, Christian
AU - Grech, Godfrey
AU - Drago Ferrante, Rosa
PY - 2017
Y1 - 2017
N2 - MiR-29 family dysregulation occurs in various cancers including breast cancers. We investigated miR-29b-1 functional role in human triple negative breast cancer (TNBC) the most aggressive breast cancer subtype. We found that miR-29b-1-5p was downregulated in human TNBC tissues and cell lines. To assess whether miR-29b-1-5p correlated with TNBC regenerative potential, we evaluated cancer stem cell enrichment in our TNBC cell lines, and found that only MDA-MB-231 and BT-20 produced primary, secondary and tertiary mammospheres, which were progressively enriched in OCT4, NANOG and SOX2 stemness genes. MiR-29b-1-5p expression inversely correlated with mammosphere stemness potential, and miR-29b-1 ectopic overexpression decreased TNBC cell growth, self-renewal, migration, invasiveness and paclitaxel resistance repressing WNT/βcatenin and AKT signaling pathways and stemness regulators. We identified SPINDLIN1 (SPIN1) among predicted miR-29b-1-5p targets. Consistently, SPIN1 was overexpressed in most TNBC tissues and cell lines and negatively correlated with miR-29b-1-5p. Target site inhibition showed that SPIN1 seems to be directly controlled by miR-29b-1-5p. Silencing SPIN1 mirrored the effects triggered by miR-29b-1 overexpression, whereas SPIN1 rescue by SPIN1miScript protector, determined the reversal of the molecular effects produced by the mimic-miR-29b-1-5p. Overall, we show that miR-29b-1 deregulation impacts on multiple oncogenic features of TNBC cells and their renewal potential, acting, at least partly, through SPIN1, and suggest that both these factors should be evaluated as new possible therapeutic targets against TNBC.
AB - MiR-29 family dysregulation occurs in various cancers including breast cancers. We investigated miR-29b-1 functional role in human triple negative breast cancer (TNBC) the most aggressive breast cancer subtype. We found that miR-29b-1-5p was downregulated in human TNBC tissues and cell lines. To assess whether miR-29b-1-5p correlated with TNBC regenerative potential, we evaluated cancer stem cell enrichment in our TNBC cell lines, and found that only MDA-MB-231 and BT-20 produced primary, secondary and tertiary mammospheres, which were progressively enriched in OCT4, NANOG and SOX2 stemness genes. MiR-29b-1-5p expression inversely correlated with mammosphere stemness potential, and miR-29b-1 ectopic overexpression decreased TNBC cell growth, self-renewal, migration, invasiveness and paclitaxel resistance repressing WNT/βcatenin and AKT signaling pathways and stemness regulators. We identified SPINDLIN1 (SPIN1) among predicted miR-29b-1-5p targets. Consistently, SPIN1 was overexpressed in most TNBC tissues and cell lines and negatively correlated with miR-29b-1-5p. Target site inhibition showed that SPIN1 seems to be directly controlled by miR-29b-1-5p. Silencing SPIN1 mirrored the effects triggered by miR-29b-1 overexpression, whereas SPIN1 rescue by SPIN1miScript protector, determined the reversal of the molecular effects produced by the mimic-miR-29b-1-5p. Overall, we show that miR-29b-1 deregulation impacts on multiple oncogenic features of TNBC cells and their renewal potential, acting, at least partly, through SPIN1, and suggest that both these factors should be evaluated as new possible therapeutic targets against TNBC.
UR - http://hdl.handle.net/10447/226025
M3 - Article
VL - 8
SP - 28939
EP - 28958
JO - Oncotarget
JF - Oncotarget
SN - 1949-2553
ER -