Super-critical and sub-critical bifurcations in a reaction-diffusion Schnakenberg model with linear cross-diffusion

Risultato della ricerca: Article

7 Citazioni (Scopus)

Abstract

In this paper the Turing pattern formation mechanism of a two components reaction-diffusion system modeling the Schnakenberg chemical reaction is considered. In Ref. (Madzavamuse et al., J Math Biol 70(4):709–743, 2015) it was shown how the presence of linear cross-diffusion terms favors the destabilization of the constant steady state. We perform the weakly nonlinear multiple scales analysis to derive the equations for the amplitude of the Turing patterns and to show how the cross-diffusion coefficients influence the occurrence of super-critical or sub-critical bifurcations. We present a numerical exploration of far from equilibrium regimes and prove the existence of multistable stationary solutions.
Lingua originaleEnglish
pagine (da-a)449-467
Numero di pagine19
RivistaRicerche di Matematica
Volume65
Stato di pubblicazionePublished - 2016

All Science Journal Classification (ASJC) codes

  • Mathematics(all)
  • Applied Mathematics

Fingerprint Entra nei temi di ricerca di 'Super-critical and sub-critical bifurcations in a reaction-diffusion Schnakenberg model with linear cross-diffusion'. Insieme formano una fingerprint unica.

  • Cita questo