Structural modelling and mechanical tests supporting the design of the ATHENA X-IFU thermal filters and WFI optical blocking filter

Risultato della ricerca: Paper

1 Citazione (Scopus)

Abstract

ATHENA is a Large high energy astrophysics space mission selected by ESA in the Cosmic Vision 2015-2025 Science Program. It will be equipped with two interchangeable focal plane detectors: the X-Ray Integral Field Unit (X-IFU) and the Wide Field Imager (WFI). Both detectors require x-ray transparent filters to fully exploit their sensitivity. In order to maximize the X-ray transparency, filters must be very thin, from a few tens to few hundreds of nm, on the other hand, they must be strong enough to survive the severe launch stresses. In particular, the WFI OBF, being launched in atmospheric pressure, shall also survive acoustic loads. In this paper, we present a review of the structural modeling performed to assist the ATHENA filters design, the preliminary results from vibration and acoustic tests, and we discuss future activities necessary to consolidate the filters design, before the preliminary requirement review of the ATHENA instruments, scheduled before the end of 2018.
Lingua originaleEnglish
Stato di pubblicazionePublished - 2018

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering
  • Applied Mathematics
  • Computer Science Applications
  • Condensed Matter Physics

Cita questo

@conference{4abda14ff2ea4c309a2d01c6fcd07f47,
title = "Structural modelling and mechanical tests supporting the design of the ATHENA X-IFU thermal filters and WFI optical blocking filter",
abstract = "ATHENA is a Large high energy astrophysics space mission selected by ESA in the Cosmic Vision 2015-2025 Science Program. It will be equipped with two interchangeable focal plane detectors: the X-Ray Integral Field Unit (X-IFU) and the Wide Field Imager (WFI). Both detectors require x-ray transparent filters to fully exploit their sensitivity. In order to maximize the X-ray transparency, filters must be very thin, from a few tens to few hundreds of nm, on the other hand, they must be strong enough to survive the severe launch stresses. In particular, the WFI OBF, being launched in atmospheric pressure, shall also survive acoustic loads. In this paper, we present a review of the structural modeling performed to assist the ATHENA filters design, the preliminary results from vibration and acoustic tests, and we discuss future activities necessary to consolidate the filters design, before the preliminary requirement review of the ATHENA instruments, scheduled before the end of 2018.",
author = "Marco Barbera and Luisa Sciortino and {Lo Cicero}, Ugo and {Ferruggia Bonura}, Salvatore and Antonino Buttacavoli",
year = "2018",
language = "English",

}

TY - CONF

T1 - Structural modelling and mechanical tests supporting the design of the ATHENA X-IFU thermal filters and WFI optical blocking filter

AU - Barbera, Marco

AU - Sciortino, Luisa

AU - Lo Cicero, Ugo

AU - Ferruggia Bonura, Salvatore

AU - Buttacavoli, Antonino

PY - 2018

Y1 - 2018

N2 - ATHENA is a Large high energy astrophysics space mission selected by ESA in the Cosmic Vision 2015-2025 Science Program. It will be equipped with two interchangeable focal plane detectors: the X-Ray Integral Field Unit (X-IFU) and the Wide Field Imager (WFI). Both detectors require x-ray transparent filters to fully exploit their sensitivity. In order to maximize the X-ray transparency, filters must be very thin, from a few tens to few hundreds of nm, on the other hand, they must be strong enough to survive the severe launch stresses. In particular, the WFI OBF, being launched in atmospheric pressure, shall also survive acoustic loads. In this paper, we present a review of the structural modeling performed to assist the ATHENA filters design, the preliminary results from vibration and acoustic tests, and we discuss future activities necessary to consolidate the filters design, before the preliminary requirement review of the ATHENA instruments, scheduled before the end of 2018.

AB - ATHENA is a Large high energy astrophysics space mission selected by ESA in the Cosmic Vision 2015-2025 Science Program. It will be equipped with two interchangeable focal plane detectors: the X-Ray Integral Field Unit (X-IFU) and the Wide Field Imager (WFI). Both detectors require x-ray transparent filters to fully exploit their sensitivity. In order to maximize the X-ray transparency, filters must be very thin, from a few tens to few hundreds of nm, on the other hand, they must be strong enough to survive the severe launch stresses. In particular, the WFI OBF, being launched in atmospheric pressure, shall also survive acoustic loads. In this paper, we present a review of the structural modeling performed to assist the ATHENA filters design, the preliminary results from vibration and acoustic tests, and we discuss future activities necessary to consolidate the filters design, before the preliminary requirement review of the ATHENA instruments, scheduled before the end of 2018.

UR - http://hdl.handle.net/10447/302534

UR - http://spie.org/x1848.xml

M3 - Paper

ER -