TY - JOUR
T1 - Steam and gas emission rate from La Soufriere volcano, Guadeloupe (Lesser Antilles): implications for the magmatic and hydrothermal fluid supply during degassing unrest
AU - Parello, Francesco
AU - Di Napoli, Rossella
AU - Calabrese, Sergio
AU - Tamburello, Giancarlo
AU - Aiuppa, Alessandro
AU - Gaudin, Damien
AU - Crispi, Olivier
AU - Beatuducel, François
AU - Hammouya, Gilbert
AU - Parello, Francesco
AU - Aiuppa, Alessandro
AU - Allard, Patrick
PY - 2014
Y1 - 2014
N2 - Since its last magmatic eruption in 1530 AD, La Soufrière andesitic volcano in Guadeloupe has displayed intensehydrothermal activity and six phreatic eruptive crises. Here we report on the first direct quantification of gasplume emissions from its summit vents,which gradually intensified during the past 20 years. Gas fluxes were determined in March 2006 and March 2012 by measuring the horizontal and vertical distributions of volcanic gasconcentrations in the air-diluted plume and scaling to the speed of plume transport. Fluxes in 2006 combine realtime measurements of volcanic H2S concentrations and plume parameters with the composition of the hot(108.5 °C) fumarolic fluid at exit. Fluxes in 2012 result from MultiGAS analysis of H2S, H2O, CO2, SO2 and H2 concentrations, combined with thermal imaging of the plume geometry and dynamics. Measurementswere not onlyfocused on the most active South crater (SC) vent, but also targeted Tarissan crater and other reactivating vents.We first demonstrate that all vents are fed by a common H2O-rich (97–98 mol%) fluid end-member, emitted almostunmodified at SC but affected by secondary shallow alterations at other vents. Daily fluxes in 2012 averaged200 tons of H2O, 15 tons of CO2, ~4 tons of H2S and 1 ton of HCl, increased by a factor ~3 compared to 2006. Eventhough modest, such fluxes make La Soufrière the second most important volcanic gas emitter in the Lesser Antilles arc, after Soufriere Hills of Montserrat. Taking account of other hydrothermal manifestations (hot springsand diffuse soil degassing), the summit fumarolic activity is shown to contribute most of the bulk volatile andheat budget of the volcano. The hydrothermal heat output (8MW) exceeds by orders of magnitude the contemporaneous seismic energy release. Isotopic evidences support that La Soufrière hydrothermal emissions aresustained by a variable but continuous heat and gas supply from a magma reservoir confined at 6–7 km depth.By using petro-geochemical data for La Soufrière magma(s) and their dissolved volatile content, and assuminga magmatic derivation of sulfur, we estimate that the volcanic gas fluxes measured in 2012 could result fromthe underground release of magmatic gas exsolved from ~1400 m3 d−1 of basaltic melt feeding the system at depth. We recommend that fumarolic gas flux at La Soufrière becomes regularly measured in the future in order to carefully monitor the temporal evolution of that magmatic supply.
AB - Since its last magmatic eruption in 1530 AD, La Soufrière andesitic volcano in Guadeloupe has displayed intensehydrothermal activity and six phreatic eruptive crises. Here we report on the first direct quantification of gasplume emissions from its summit vents,which gradually intensified during the past 20 years. Gas fluxes were determined in March 2006 and March 2012 by measuring the horizontal and vertical distributions of volcanic gasconcentrations in the air-diluted plume and scaling to the speed of plume transport. Fluxes in 2006 combine realtime measurements of volcanic H2S concentrations and plume parameters with the composition of the hot(108.5 °C) fumarolic fluid at exit. Fluxes in 2012 result from MultiGAS analysis of H2S, H2O, CO2, SO2 and H2 concentrations, combined with thermal imaging of the plume geometry and dynamics. Measurementswere not onlyfocused on the most active South crater (SC) vent, but also targeted Tarissan crater and other reactivating vents.We first demonstrate that all vents are fed by a common H2O-rich (97–98 mol%) fluid end-member, emitted almostunmodified at SC but affected by secondary shallow alterations at other vents. Daily fluxes in 2012 averaged200 tons of H2O, 15 tons of CO2, ~4 tons of H2S and 1 ton of HCl, increased by a factor ~3 compared to 2006. Eventhough modest, such fluxes make La Soufrière the second most important volcanic gas emitter in the Lesser Antilles arc, after Soufriere Hills of Montserrat. Taking account of other hydrothermal manifestations (hot springsand diffuse soil degassing), the summit fumarolic activity is shown to contribute most of the bulk volatile andheat budget of the volcano. The hydrothermal heat output (8MW) exceeds by orders of magnitude the contemporaneous seismic energy release. Isotopic evidences support that La Soufrière hydrothermal emissions aresustained by a variable but continuous heat and gas supply from a magma reservoir confined at 6–7 km depth.By using petro-geochemical data for La Soufrière magma(s) and their dissolved volatile content, and assuminga magmatic derivation of sulfur, we estimate that the volcanic gas fluxes measured in 2012 could result fromthe underground release of magmatic gas exsolved from ~1400 m3 d−1 of basaltic melt feeding the system at depth. We recommend that fumarolic gas flux at La Soufrière becomes regularly measured in the future in order to carefully monitor the temporal evolution of that magmatic supply.
UR - http://hdl.handle.net/10447/97685
M3 - Article
VL - 384
SP - 76
EP - 93
JO - Chemical Geology
JF - Chemical Geology
SN - 0009-2541
ER -