Static strength and fatigue life of optimized hybrid single lap aluminum–CFRP structural joints

Risultato della ricerca: Article

6 Citazioni (Scopus)

Abstract

Hybrid bolted/bonded joints are used to assemble structural components, commonly made by carbon fiber reinforced plastics (CFRP), with aluminum frames. Hence, they have become common solutions in a number of modern structural applications in the industrial fields, as well as civil constructions. Unfortunately, due to the lack of understanding of the relationships between the multiple parameters of influence that characterize their mechanical performance, only limited improvement have been achieved so far over classical bonding approaches, in terms of static and fatigue strength. As a result, further studies are needed in order to better exploit the potential of hybrid bolted/bonded joints and identify optimum joint configurations. This paper describes an optimization procedure of the joints, achieved through a systematic experimental analysis of hybrid single lap aluminum–CFRP structural joints. This, analyzing the effect of overlap length, stiffness imbalance, adhesive curing as well as of size, positioning and preload of the bolt, results in a significant rise of the strength, especially in presence of high cycles fatigue loading. Also, micrographic analysis and related numerical simulations have allowed to gain a better insight into the damage mechanisms occurring during the in-service tensile loading, corroborating the highest mechanical performance of the angle-ply lay-up proposed for the CFRP adherent.
Lingua originaleEnglish
pagine (da-a)1-28
Numero di pagine28
RivistaJournal of Adhesion
Stato di pubblicazionePublished - 2017

Fingerprint

bonded joints
Bolted joints
carbon fiber reinforced plastics
fatigue life
Carbon fiber reinforced plastics
lay-up
Fatigue of materials
bolts
Bolts
curing
Aluminum
adhesives
positioning
Curing
stiffness
Adhesives
Stiffness
damage
aluminum
cycles

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Mechanics of Materials
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Materials Chemistry

Cita questo

@article{1716807b228e4a09aecffe66e8e1c1ff,
title = "Static strength and fatigue life of optimized hybrid single lap aluminum–CFRP structural joints",
abstract = "Hybrid bolted/bonded joints are used to assemble structural components, commonly made by carbon fiber reinforced plastics (CFRP), with aluminum frames. Hence, they have become common solutions in a number of modern structural applications in the industrial fields, as well as civil constructions. Unfortunately, due to the lack of understanding of the relationships between the multiple parameters of influence that characterize their mechanical performance, only limited improvement have been achieved so far over classical bonding approaches, in terms of static and fatigue strength. As a result, further studies are needed in order to better exploit the potential of hybrid bolted/bonded joints and identify optimum joint configurations. This paper describes an optimization procedure of the joints, achieved through a systematic experimental analysis of hybrid single lap aluminum–CFRP structural joints. This, analyzing the effect of overlap length, stiffness imbalance, adhesive curing as well as of size, positioning and preload of the bolt, results in a significant rise of the strength, especially in presence of high cycles fatigue loading. Also, micrographic analysis and related numerical simulations have allowed to gain a better insight into the damage mechanisms occurring during the in-service tensile loading, corroborating the highest mechanical performance of the angle-ply lay-up proposed for the CFRP adherent.",
author = "Marannano, {Giuseppe Vincenzo} and Bernardo Zuccarello",
year = "2017",
language = "English",
pages = "1--28",
journal = "Journal of Adhesion",
issn = "0021-8464",
publisher = "Taylor and Francis Ltd.",

}

TY - JOUR

T1 - Static strength and fatigue life of optimized hybrid single lap aluminum–CFRP structural joints

AU - Marannano, Giuseppe Vincenzo

AU - Zuccarello, Bernardo

PY - 2017

Y1 - 2017

N2 - Hybrid bolted/bonded joints are used to assemble structural components, commonly made by carbon fiber reinforced plastics (CFRP), with aluminum frames. Hence, they have become common solutions in a number of modern structural applications in the industrial fields, as well as civil constructions. Unfortunately, due to the lack of understanding of the relationships between the multiple parameters of influence that characterize their mechanical performance, only limited improvement have been achieved so far over classical bonding approaches, in terms of static and fatigue strength. As a result, further studies are needed in order to better exploit the potential of hybrid bolted/bonded joints and identify optimum joint configurations. This paper describes an optimization procedure of the joints, achieved through a systematic experimental analysis of hybrid single lap aluminum–CFRP structural joints. This, analyzing the effect of overlap length, stiffness imbalance, adhesive curing as well as of size, positioning and preload of the bolt, results in a significant rise of the strength, especially in presence of high cycles fatigue loading. Also, micrographic analysis and related numerical simulations have allowed to gain a better insight into the damage mechanisms occurring during the in-service tensile loading, corroborating the highest mechanical performance of the angle-ply lay-up proposed for the CFRP adherent.

AB - Hybrid bolted/bonded joints are used to assemble structural components, commonly made by carbon fiber reinforced plastics (CFRP), with aluminum frames. Hence, they have become common solutions in a number of modern structural applications in the industrial fields, as well as civil constructions. Unfortunately, due to the lack of understanding of the relationships between the multiple parameters of influence that characterize their mechanical performance, only limited improvement have been achieved so far over classical bonding approaches, in terms of static and fatigue strength. As a result, further studies are needed in order to better exploit the potential of hybrid bolted/bonded joints and identify optimum joint configurations. This paper describes an optimization procedure of the joints, achieved through a systematic experimental analysis of hybrid single lap aluminum–CFRP structural joints. This, analyzing the effect of overlap length, stiffness imbalance, adhesive curing as well as of size, positioning and preload of the bolt, results in a significant rise of the strength, especially in presence of high cycles fatigue loading. Also, micrographic analysis and related numerical simulations have allowed to gain a better insight into the damage mechanisms occurring during the in-service tensile loading, corroborating the highest mechanical performance of the angle-ply lay-up proposed for the CFRP adherent.

UR - http://hdl.handle.net/10447/226982

UR - http://www.tandf.co.uk/journals/titles/00218464.asp

M3 - Article

SP - 1

EP - 28

JO - Journal of Adhesion

JF - Journal of Adhesion

SN - 0021-8464

ER -