Stability of radial symmetry for a Monge-Ampère overdetermined problem

Barbara Brandolini, Barbara Brandolini, Carlo Nitsch, Cristina Trombetti, Paolo Salani

Risultato della ricerca: Articlepeer review

11 Citazioni (Scopus)

Abstract

Recently the symmetry of solutions to overdetermined problems has been established for the class of Hessian operators, including the Monge-Ampère operator. In this paper we prove that the radial symmetry of the domain and of the solution to an overdetermined Dirichlet problem for the Monge-Ampère equation is stable under suitable perturbations of the data. © 2008 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag.
Lingua originaleEnglish
pagine (da-a)445-453
Numero di pagine9
RivistaAnnali di Matematica Pura ed Applicata
Volume188
Stato di pubblicazionePublished - 2009

All Science Journal Classification (ASJC) codes

  • Applied Mathematics

Cita questo