SPH method: numerical investigations and applications

Risultato della ricerca: Paper

Abstract

In this paper we discuss on the enhancements in accuracy and computational demanding in approx- imating a function and its derivatives via Smoothed Particle Hydrodynamics. The standard method is widely used nowadays in various physics and engineering applications [1],[2],[3]. However it suffers of low approximation accuracy at boundaries or when scattered data distributions are con- sidered. In this paper we discuss on some numerical behaviors of the method. Some variants of the process are analyzed and results on the accuracy and the computational demanding, dealing with different sets of data and bivariate functions, are proposed.
Lingua originaleEnglish
Stato di pubblicazionePublished - 2018

Cita questo

@conference{e624b406adfa469cb03f84647d67e5f6,
title = "SPH method: numerical investigations and applications",
abstract = "In this paper we discuss on the enhancements in accuracy and computational demanding in approx- imating a function and its derivatives via Smoothed Particle Hydrodynamics. The standard method is widely used nowadays in various physics and engineering applications [1],[2],[3]. However it suffers of low approximation accuracy at boundaries or when scattered data distributions are con- sidered. In this paper we discuss on some numerical behaviors of the method. Some variants of the process are analyzed and results on the accuracy and the computational demanding, dealing with different sets of data and bivariate functions, are proposed.",
author = "Elisa Francomano and Marta Paliaga",
year = "2018",
language = "English",

}

TY - CONF

T1 - SPH method: numerical investigations and applications

AU - Francomano, Elisa

AU - Paliaga, Marta

PY - 2018

Y1 - 2018

N2 - In this paper we discuss on the enhancements in accuracy and computational demanding in approx- imating a function and its derivatives via Smoothed Particle Hydrodynamics. The standard method is widely used nowadays in various physics and engineering applications [1],[2],[3]. However it suffers of low approximation accuracy at boundaries or when scattered data distributions are con- sidered. In this paper we discuss on some numerical behaviors of the method. Some variants of the process are analyzed and results on the accuracy and the computational demanding, dealing with different sets of data and bivariate functions, are proposed.

AB - In this paper we discuss on the enhancements in accuracy and computational demanding in approx- imating a function and its derivatives via Smoothed Particle Hydrodynamics. The standard method is widely used nowadays in various physics and engineering applications [1],[2],[3]. However it suffers of low approximation accuracy at boundaries or when scattered data distributions are con- sidered. In this paper we discuss on some numerical behaviors of the method. Some variants of the process are analyzed and results on the accuracy and the computational demanding, dealing with different sets of data and bivariate functions, are proposed.

UR - http://hdl.handle.net/10447/333145

M3 - Paper

ER -