Speeding up the antidynamical Casimir effect with nonstationary qutrits

Benedetto Militello, Anna Napoli, Anna Napoli, Díaz-Guevara, Dodonov, Benedetto Militello

Risultato della ricerca: Articlepeer review

5 Citazioni (Scopus)


The antidynamical Casimir effect (ADCE) is a term coined to designate the coherent annihilation of excitations due to resonant external perturbation of system parameters, allowing for extraction of quantum work from nonvacuum states of some field. Originally proposed for a two-level atom (qubit) coupled to a single-cavity mode in the context of the nonstationary quantum Rabi model, it suffered from a very low transition rate and correspondingly narrow resonance linewidth. In this paper we show analytically and numerically that the ADCE rate can be increased by at least one order of magnitude by replacing the qubit by an artificial three-level atom (qutrit) in a properly chosen configuration. For the cavity thermal state we demonstrate that the dynamics of the average photon number and atomic excitation is completely different from the qubit's case, while the behavior of the total number of excitations is qualitatively similar yet significantly faster.
Lingua originaleEnglish
pagine (da-a)032509-1-032509-9
Numero di pagine9
RivistaPhysical Review A
Stato di pubblicazionePublished - 2017

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.3100.3107???


Entra nei temi di ricerca di 'Speeding up the antidynamical Casimir effect with nonstationary qutrits'. Insieme formano una fingerprint unica.

Cita questo