Abstract
In virtue of a recent bound obtained in [P. Niroomand and F.G. Russo, A note on the Schur multiplier of a nilpotent Lie algebra, Comm. Algebra 39 (2011), 1293--1297], we classify all capable nilpotent Lie algebras of finite dimension possessing a derived subalgebra of dimension one. Indirectly, we find also a criterion for detecting noncapable Lie algebras. The final part contains a construction, which shows that there exist capable Lie algebras of arbitrary big corank (in the sense of Berkovich--Zhou).
Lingua originale | English |
---|---|
pagine (da-a) | 36-44 |
Numero di pagine | 9 |
Rivista | Journal of Algebra |
Volume | 384 |
Stato di pubblicazione | Published - 2013 |
All Science Journal Classification (ASJC) codes
- ???subjectarea.asjc.2600.2602???