Solvable Extensions of Nilpotent Complex Lie Algebras of Type 2n,1,1

Risultato della ricerca: Article

Abstract

We investigate derivations of nilpotent complex Lie algebras of type {2n, 1, 1} with the aim to classify nilpotent complex Lie algebras the commutator ideals of which have codimension one and are nilpotent Lie algebras of type {2n, 1, 1}
Lingua originaleEnglish
pagine (da-a)607-616
Numero di pagine10
RivistaMoscow Mathematical Journal
Volume18
Stato di pubblicazionePublished - 2018

Fingerprint

Lie Algebra
Nilpotent Lie Algebra
Commutator
Codimension
Classify

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Cita questo

@article{21c7685002d04a95a1466820a7c1ac12,
title = "Solvable Extensions of Nilpotent Complex Lie Algebras of Type 2n,1,1",
abstract = "We investigate derivations of nilpotent complex Lie algebras of type {2n, 1, 1} with the aim to classify nilpotent complex Lie algebras the commutator ideals of which have codimension one and are nilpotent Lie algebras of type {2n, 1, 1}",
author = "Giovanni Falcone and Claudio Bartolone and {Di Bartolo}, Alfonso",
year = "2018",
language = "English",
volume = "18",
pages = "607--616",
journal = "Moscow Mathematical Journal",
issn = "1609-3321",
publisher = "Independent University of Moscow",

}

TY - JOUR

T1 - Solvable Extensions of Nilpotent Complex Lie Algebras of Type 2n,1,1

AU - Falcone, Giovanni

AU - Bartolone, Claudio

AU - Di Bartolo, Alfonso

PY - 2018

Y1 - 2018

N2 - We investigate derivations of nilpotent complex Lie algebras of type {2n, 1, 1} with the aim to classify nilpotent complex Lie algebras the commutator ideals of which have codimension one and are nilpotent Lie algebras of type {2n, 1, 1}

AB - We investigate derivations of nilpotent complex Lie algebras of type {2n, 1, 1} with the aim to classify nilpotent complex Lie algebras the commutator ideals of which have codimension one and are nilpotent Lie algebras of type {2n, 1, 1}

UR - http://hdl.handle.net/10447/337523

UR - http://www.mathjournals.org/mmj/2018-018-004/

M3 - Article

VL - 18

SP - 607

EP - 616

JO - Moscow Mathematical Journal

JF - Moscow Mathematical Journal

SN - 1609-3321

ER -