Smartphone data analysis for human activity recognition

Risultato della ricerca: Otherpeer review

9 Citazioni (Scopus)


In recent years, the percentage of the population owning a smartphone has increased significantly. These devices provide the user with more and more functions, so that anyone is encouraged to carry one during the day, implicitly producing that can be analysed to infer knowledge of the userâs context. In this work we present a novel framework for Human Activity Recognition (HAR) using smartphone data captured by means of embedded triaxial accelerometer and gyroscope sensors. Some statistics over the captured sensor data are computed to model each activity, then real-time classification is performed by means of an efficient supervised learning technique. The system we propose also adopts a participatory sensing paradigm where userâs feedbacks on recognised activities are exploited to update the inner models of the system. Experimental results show the effectiveness of our solution as compared to other state-of-the-art techniques.
Lingua originaleEnglish
Numero di pagine14
Stato di pubblicazionePublished - 2017

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.2600.2614???
  • ???subjectarea.asjc.1700.1700???


Entra nei temi di ricerca di 'Smartphone data analysis for human activity recognition'. Insieme formano una fingerprint unica.

Cita questo