Set valued Kurzweil-Henstock-Pettis integral

Luisa Di Piazza, Kazimierz Musiał

Risultato della ricerca: Article

32 Citazioni (Scopus)

Abstract

It is shown that the obviousgeneralization of the Pettis integral of a multifunction obtainedby replacing the Lebesgue integrability of the support functionsby the Kurzweil--Henstock integrability, produces an integralwhich can be described -- in case of multifunctions with (weakly)compact convex values -- in terms of the Pettis set-valuedintegral.
Lingua originaleEnglish
pagine (da-a)167-179
Numero di pagine13
RivistaSet-Valued Analysis
Volume13
Stato di pubblicazionePublished - 2005

Fingerprint

Pettis Integral
Integrability
Henri Léon Lebésgue

All Science Journal Classification (ASJC) codes

  • Analysis
  • Applied Mathematics

Cita questo

Set valued Kurzweil-Henstock-Pettis integral. / Di Piazza, Luisa; Musiał, Kazimierz.

In: Set-Valued Analysis, Vol. 13, 2005, pag. 167-179.

Risultato della ricerca: Article

Di Piazza, Luisa ; Musiał, Kazimierz. / Set valued Kurzweil-Henstock-Pettis integral. In: Set-Valued Analysis. 2005 ; Vol. 13. pagg. 167-179.
@article{d8b19fd5c21548ad9b459deb580cadb2,
title = "Set valued Kurzweil-Henstock-Pettis integral",
abstract = "It is shown that the obviousgeneralization of the Pettis integral of a multifunction obtainedby replacing the Lebesgue integrability of the support functionsby the Kurzweil--Henstock integrability, produces an integralwhich can be described -- in case of multifunctions with (weakly)compact convex values -- in terms of the Pettis set-valuedintegral.",
author = "{Di Piazza}, Luisa and Kazimierz Musiał",
year = "2005",
language = "English",
volume = "13",
pages = "167--179",
journal = "Set-Valued and Variational Analysis",
issn = "1877-0533",
publisher = "Springer Verlag",

}

TY - JOUR

T1 - Set valued Kurzweil-Henstock-Pettis integral

AU - Di Piazza, Luisa

AU - Musiał, Kazimierz

PY - 2005

Y1 - 2005

N2 - It is shown that the obviousgeneralization of the Pettis integral of a multifunction obtainedby replacing the Lebesgue integrability of the support functionsby the Kurzweil--Henstock integrability, produces an integralwhich can be described -- in case of multifunctions with (weakly)compact convex values -- in terms of the Pettis set-valuedintegral.

AB - It is shown that the obviousgeneralization of the Pettis integral of a multifunction obtainedby replacing the Lebesgue integrability of the support functionsby the Kurzweil--Henstock integrability, produces an integralwhich can be described -- in case of multifunctions with (weakly)compact convex values -- in terms of the Pettis set-valuedintegral.

UR - http://hdl.handle.net/10447/18025

M3 - Article

VL - 13

SP - 167

EP - 179

JO - Set-Valued and Variational Analysis

JF - Set-Valued and Variational Analysis

SN - 1877-0533

ER -