Abstract
In this paper we introduce set-valued Hardy-Rogers type contraction in 0-complete partial metric spaces and prove the corresponding theorem of fixed point. Our results generalize, extend and unify several known results, in particular the recent Nadler’s fixed point theorem in the context of complete partial metric spaces established by Aydi et al. (2012). As an application of our results, a homotopy theoremfor such mappings is derived. Also, some examples are included which show that our generalization is proper.
Lingua originale | English |
---|---|
pagine (da-a) | 1-9 |
Numero di pagine | 0 |
Rivista | International Journal of Mathematics and Mathematical Sciences |
Volume | 2014 |
Stato di pubblicazione | Published - 2014 |
All Science Journal Classification (ASJC) codes
- ???subjectarea.asjc.2600.2601???