Abstract
Halloysite nanotubes were functionalized with stimuli-responsive macromolecules to generate smart nanohybrids. Poly(N-isopropylacrylamide)-co-methacrylic acid (PNIPAAM-co-MA) was selectively adsorbed into halloysite lumen by exploiting electrostatic interactions. Amine-terminated PNIPAAM polymer was also investigated that selectively interacts with the outer surface of the nanotubes. The adsorption site has a profound effect on the thermodynamic behavior and therefore temperature responsive features of the hybrid material. The drug release kinetics was investigated by using diclofenac as a non-steroidal anti-inflammatory drug model. The release kinetics depends on the nanoarchitecture of the PNIPAAM/halloysite based material. In particular, diclofenac release was slowed down above the LCST for PNIPAAM-co-MA/halloysite. Opposite trends occurred for halloysite functionalized with PNIPAAM at the outer surface. This work represents a further step toward the opportunity to extend and control the delivery conditions of active species, which represent a key point in technological applications. © 2018 IOP Publishing Ltd.
Lingua originale | English |
---|---|
Numero di pagine | 7 |
Rivista | Nanotechnology |
Volume | 29 |
Stato di pubblicazione | Published - 2018 |
All Science Journal Classification (ASJC) codes
- ???subjectarea.asjc.1500.1502???
- ???subjectarea.asjc.1600.1600???
- ???subjectarea.asjc.2500.2500???
- ???subjectarea.asjc.2200.2211???
- ???subjectarea.asjc.2200.2210???
- ???subjectarea.asjc.2200.2208???