Relations among Gauge and Pettis integrals for cwk(X)- valued multifunctions

Luisa Di Piazza, Domenico Candeloro, Kazimierz Musiał, Anna Rita Sambucini

Risultato della ricerca: Articlepeer review

15 Citazioni (Scopus)

Abstract

The aim of this paper is to study relationships among ``gauge integrals'' (Henstock, Mc Shane, Birkhoff) and Pettis integral of multifunctions whose values are weakly compact and convex subsets of a general Banach space, not necessarily separable. For this purpose we prove the existence of variationally Henstock integrable selections for variationally Henstock integrable multifunctions. Using this and other known results concerning the existence of selections integrable in the same sense as the corresponding multifunctions, we obtain three decomposition theorems. As applications of such decompositions, we deduce characterizations of Henstock integrable multifunctions, together with an extension of a well-known theorem of Fremlin
Lingua originaleEnglish
pagine (da-a)171-183
Numero di pagine13
RivistaAnnali di Matematica Pura ed Applicata
Volume197
Stato di pubblicazionePublished - 2018

All Science Journal Classification (ASJC) codes

  • Applied Mathematics

Fingerprint Entra nei temi di ricerca di 'Relations among Gauge and Pettis integrals for cwk(X)- valued multifunctions'. Insieme formano una fingerprint unica.

Cita questo