Quantum clock: A critical discussion on spacetime

Risultato della ricerca: Article

1 Citazione (Scopus)

Abstract

We critically discuss the measure of very short time intervals. By means of a Gedankenexperiment, we describe an ideal clock based on the occurrence of completely random events. Many previous thought experiments have suggested fundamental Planck-scale limits on measurements of distance and time. Here we present a new type of thought experiment, based on a different type of clock, that provide further support for the existence of such limits. We show that the minimum time interval Δ t that this clock can measure scales as the inverse of its size Δ r. This implies an uncertainty relation between space and time: Δ r Δ t > G ℏ / c4, where G, ℏ, and c are the gravitational constant, the reduced Planck constant, and the speed of light, respectively. We outline and briefly discuss the implications of this uncertainty conjecture.
Lingua originaleEnglish
pagine (da-a)-
Numero di pagine5
RivistaPHYSICAL REVIEW. D
Volume93
Stato di pubblicazionePublished - 2016

Fingerprint

clocks
intervals
gravitational constant
occurrences

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy (miscellaneous)

Cita questo

Quantum clock: A critical discussion on spacetime. / Di Salvo, Tiziana; Iaria, Rosario; Burderi, Luciano.

In: PHYSICAL REVIEW. D, Vol. 93, 2016, pag. -.

Risultato della ricerca: Article

@article{a78cffe4dfe549d7979355f5dd9a594b,
title = "Quantum clock: A critical discussion on spacetime",
abstract = "We critically discuss the measure of very short time intervals. By means of a Gedankenexperiment, we describe an ideal clock based on the occurrence of completely random events. Many previous thought experiments have suggested fundamental Planck-scale limits on measurements of distance and time. Here we present a new type of thought experiment, based on a different type of clock, that provide further support for the existence of such limits. We show that the minimum time interval Δ t that this clock can measure scales as the inverse of its size Δ r. This implies an uncertainty relation between space and time: Δ r Δ t > G ℏ / c4, where G, ℏ, and c are the gravitational constant, the reduced Planck constant, and the speed of light, respectively. We outline and briefly discuss the implications of this uncertainty conjecture.",
keywords = "Nuclear and High Energy Physics",
author = "{Di Salvo}, Tiziana and Rosario Iaria and Luciano Burderi",
year = "2016",
language = "English",
volume = "93",
pages = "--",
journal = "Physical Review D",
issn = "2470-0010",
publisher = "American Physical Society",

}

TY - JOUR

T1 - Quantum clock: A critical discussion on spacetime

AU - Di Salvo, Tiziana

AU - Iaria, Rosario

AU - Burderi, Luciano

PY - 2016

Y1 - 2016

N2 - We critically discuss the measure of very short time intervals. By means of a Gedankenexperiment, we describe an ideal clock based on the occurrence of completely random events. Many previous thought experiments have suggested fundamental Planck-scale limits on measurements of distance and time. Here we present a new type of thought experiment, based on a different type of clock, that provide further support for the existence of such limits. We show that the minimum time interval Δ t that this clock can measure scales as the inverse of its size Δ r. This implies an uncertainty relation between space and time: Δ r Δ t > G ℏ / c4, where G, ℏ, and c are the gravitational constant, the reduced Planck constant, and the speed of light, respectively. We outline and briefly discuss the implications of this uncertainty conjecture.

AB - We critically discuss the measure of very short time intervals. By means of a Gedankenexperiment, we describe an ideal clock based on the occurrence of completely random events. Many previous thought experiments have suggested fundamental Planck-scale limits on measurements of distance and time. Here we present a new type of thought experiment, based on a different type of clock, that provide further support for the existence of such limits. We show that the minimum time interval Δ t that this clock can measure scales as the inverse of its size Δ r. This implies an uncertainty relation between space and time: Δ r Δ t > G ℏ / c4, where G, ℏ, and c are the gravitational constant, the reduced Planck constant, and the speed of light, respectively. We outline and briefly discuss the implications of this uncertainty conjecture.

KW - Nuclear and High Energy Physics

UR - http://hdl.handle.net/10447/209923

UR - http://harvest.aps.org/bagit/articles/10.1103/PhysRevD.93.064017/apsxml

M3 - Article

VL - 93

SP - -

JO - Physical Review D

JF - Physical Review D

SN - 2470-0010

ER -