Abstract
Property (R) holds for a bounded linear operator T defined on a complex Banach space X, if the isolated points of the spectrum of T which are eigenvalues of finite multiplicity are exactly those points c of the approximate point spectrum such CI- T is upper semi-Browder. In this paper we consider the permanence of this property under quasi nilpotent, Riesz or algebraic perturbations commuting with T.
Lingua originale | English |
---|---|
pagine (da-a) | 367-382 |
Numero di pagine | 16 |
Rivista | Mediterranean Journal of Mathematics |
Volume | 10 |
Stato di pubblicazione | Published - 2013 |
All Science Journal Classification (ASJC) codes
- ???subjectarea.asjc.2600.2600???