TY - JOUR

T1 - Probabilistic Logic under Coherence: Complexity and Algorithms

AU - Sanfilippo, Giuseppe

AU - Gilio, Angelo

AU - Biazzo, Veronica

AU - Lukasiewicz, Thomas

PY - 2005

Y1 - 2005

N2 - In previous work [V. Biazzo, A. Gilio, T. Lukasiewicz and G. Sanfilippo, Probabilistic logic under coherence, model-theoretic probabilistic logic, and default reasoning in System P, Journal of Applied Non-Classical Logics 12(2) (2002) 189-213.], we have explored the relationship between probabilistic reasoning under coherence and model-theoretic probabilistic reasoning. In particular, we have shown that the notions of g-coherence and of g-coherent entailment in probabilistic reasoning under coherence can be expressed by combining notions in model-theoretic probabilistic reasoning with concepts from default reasoning. In this paper, we continue this line of research. Based on the above semantic results, we draw a precise picture of the computational complexity of probabilistic reasoning under coherence. Moreover, we introduce transformations for probabilistic reasoning under coherence, which reduce an instance of deciding g-coherence or of computing tight intervals under g-coherent entailment to a smaller problem instance, and which can be done very efficiently. Furthermore, we present new algorithms for deciding g-coherence and for computing tight intervals under g-coherent entailment, which reformulate previous algorithms using terminology from default reasoning. They are based on reductions to standard problems in model-theoretic probabilistic reasoning, which in turn can be reduced to linear optimization problems. Hence, efficient techniques for model-theoretic probabilistic reasoning can immediately be applied for probabilistic reasoning under coherence (for example, column generation techniques). We describe several such techniques, which transform problem instances in model-theoretic probabilistic reasoning into smaller problem instances. We also describe a technique for obtaining a reduced set of variables for the associated linear optimization problems in the conjunctive case, and give new characterizations of this reduced set as a set of non-decomposable variables, and using the concept of random gain.

AB - In previous work [V. Biazzo, A. Gilio, T. Lukasiewicz and G. Sanfilippo, Probabilistic logic under coherence, model-theoretic probabilistic logic, and default reasoning in System P, Journal of Applied Non-Classical Logics 12(2) (2002) 189-213.], we have explored the relationship between probabilistic reasoning under coherence and model-theoretic probabilistic reasoning. In particular, we have shown that the notions of g-coherence and of g-coherent entailment in probabilistic reasoning under coherence can be expressed by combining notions in model-theoretic probabilistic reasoning with concepts from default reasoning. In this paper, we continue this line of research. Based on the above semantic results, we draw a precise picture of the computational complexity of probabilistic reasoning under coherence. Moreover, we introduce transformations for probabilistic reasoning under coherence, which reduce an instance of deciding g-coherence or of computing tight intervals under g-coherent entailment to a smaller problem instance, and which can be done very efficiently. Furthermore, we present new algorithms for deciding g-coherence and for computing tight intervals under g-coherent entailment, which reformulate previous algorithms using terminology from default reasoning. They are based on reductions to standard problems in model-theoretic probabilistic reasoning, which in turn can be reduced to linear optimization problems. Hence, efficient techniques for model-theoretic probabilistic reasoning can immediately be applied for probabilistic reasoning under coherence (for example, column generation techniques). We describe several such techniques, which transform problem instances in model-theoretic probabilistic reasoning into smaller problem instances. We also describe a technique for obtaining a reduced set of variables for the associated linear optimization problems in the conjunctive case, and give new characterizations of this reduced set as a set of non-decomposable variables, and using the concept of random gain.

KW - algorithms

KW - computational complexity

KW - conditional constraint

KW - conditional probability assessment

KW - g-coherence

KW - g-coherent entailment

KW - logical constraint

KW - model-theoretic probabilistic logic

KW - probabilistic logic under coherence

KW - algorithms

KW - computational complexity

KW - conditional constraint

KW - conditional probability assessment

KW - g-coherence

KW - g-coherent entailment

KW - logical constraint

KW - model-theoretic probabilistic logic

KW - probabilistic logic under coherence

UR - http://hdl.handle.net/10447/6667

M3 - Article

VL - 45

SP - 35

EP - 81

JO - Annals of Mathematics and Artificial Intelligence

JF - Annals of Mathematics and Artificial Intelligence

SN - 1012-2443

ER -