Probabilistic characterization of nonlinear systems under Poisson white noise parametric input via complex fractional moments

Risultato della ricerca: Conference contribution

Abstract

In this paper the probabilistic characterization of a nonlinear system enforced by parametric Poissonian white noise in terms of complex fractional moments is presented. In fact the initial system driven by a parametric input could be transformed into a system with an external type of excitation through an invertible nonlinear transformation. It is shown that by using Mellin transform theorem and related concepts, the solution of the Kolmogorov-Feller equation for the system with external input may be obtained in a very easy way
Lingua originaleEnglish
Titolo della pubblicazione ospiteInternational Conference on Fractional Differentiation and Its Applications (ICFDA14)
Numero di pagine6
Stato di pubblicazionePublished - 2014

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.2600.2604???
  • ???subjectarea.asjc.2600.2611???
  • ???subjectarea.asjc.2600.2612???

Fingerprint

Entra nei temi di ricerca di 'Probabilistic characterization of nonlinear systems under Poisson white noise parametric input via complex fractional moments'. Insieme formano una fingerprint unica.

Cita questo