Power-law hereditariness of hierarchical fractal bones

Mario Di Paola, Massimiliano Zingales, Pietro Pollaci, Luca Deseri

Risultato della ricerca: Articlepeer review

40 Citazioni (Scopus)

Abstract

In this paper, the authors introduce a hierarchic fractal model to describe bone hereditariness. Indeed, experimental data of stress relaxation or creep functions obtained by compressive/tensile tests have been proved to be fit by power law with real exponent 0 ≤ β ≤1. The rheological behavior of the material has therefore been obtained, using the Boltzmann-Volterra superposition principle, in terms of real order integrals and derivatives (fractional-order calculus). It is shown that the power laws describing creep/relaxation of bone tissue may be obtained by introducing a fractal description of bone cross-section, and the Hausdorff dimension of the fractal geometry is then related to the exponent of the power law.
Lingua originaleEnglish
Numero di pagine23
RivistaInternational Journal for Numerical Methods in Biomedical Engineering
Volume29
Stato di pubblicazionePublished - 2013

All Science Journal Classification (ASJC) codes

  • Software
  • Biomedical Engineering
  • Modelling and Simulation
  • Molecular Biology
  • Computational Theory and Mathematics
  • Applied Mathematics

Fingerprint Entra nei temi di ricerca di 'Power-law hereditariness of hierarchical fractal bones'. Insieme formano una fingerprint unica.

Cita questo