Positive solutions for parametric singular Dirichlet (p,q)-equations

Calogero Vetro, Youpei Zhang, Nikolaos S. Papageorgiou

Risultato della ricerca: Articlepeer review

Abstract

We consider a nonlinear elliptic Dirichlet problem driven by the (p,q)-Laplacian and a reaction consisting of a parametric singular term plus a Caratheodory perturbation f(z,x) which is (p-1)-linear as x goes to + infinity. First we prove a bifurcation-type theorem describing in an exact way the changes in the set of positive solutions as the parameter lambda>0 moves. Subsequently, we focus on the solution multifunction and prove its continuity properties. Finally we prove the existence of a smallest (minimal) solution u*_lambda and investigate the monotonicity and continuity properties of the map lambda --> u*_lambda.
Lingua originaleEnglish
pagine (da-a)1-23
Numero di pagine23
RivistaNONLINEAR ANALYSIS
Volume198
Stato di pubblicazionePublished - 2020

All Science Journal Classification (ASJC) codes

  • Analysis
  • Applied Mathematics

Fingerprint Entra nei temi di ricerca di 'Positive solutions for parametric singular Dirichlet (p,q)-equations'. Insieme formano una fingerprint unica.

Cita questo