Polynomial identities on superalgebras: classifying linear growth

Paola Misso, Antonino Giambruno, Daniela La Mattina, Giambruno, Daniela La Mattina, Misso

Risultato della ricerca: Article

10 Citazioni (Scopus)

Abstract

We classify, up to PI-equivalence, the superalgebras over a field of characteristic zero whose sequence of codimensions is linearly bounded. As a consequence we determine the linear functions describing the graded codimensions of a superalgebra.
Lingua originaleEnglish
pagine (da-a)215-240
Numero di pagine26
RivistaJournal of Pure and Applied Algebra
Volume207
Stato di pubblicazionePublished - 2006

Fingerprint

Polynomial Identities
Superalgebra
Codimension
Linearly
Classify
Equivalence
Zero

All Science Journal Classification (ASJC) codes

  • Algebra and Number Theory

Cita questo

Polynomial identities on superalgebras: classifying linear growth. / Misso, Paola; Giambruno, Antonino; La Mattina, Daniela; Giambruno; La Mattina, Daniela; Misso.

In: Journal of Pure and Applied Algebra, Vol. 207, 2006, pag. 215-240.

Risultato della ricerca: Article

@article{5d08f8259df3432a869054c75dce84bd,
title = "Polynomial identities on superalgebras: classifying linear growth",
abstract = "We classify, up to PI-equivalence, the superalgebras over a field of characteristic zero whose sequence of codimensions is linearly bounded. As a consequence we determine the linear functions describing the graded codimensions of a superalgebra.",
author = "Paola Misso and Antonino Giambruno and {La Mattina}, Daniela and Giambruno and {La Mattina}, Daniela and Misso",
year = "2006",
language = "English",
volume = "207",
pages = "215--240",
journal = "Journal of Pure and Applied Algebra",
issn = "0022-4049",
publisher = "Elsevier",

}

TY - JOUR

T1 - Polynomial identities on superalgebras: classifying linear growth

AU - Misso, Paola

AU - Giambruno, Antonino

AU - La Mattina, Daniela

AU - Giambruno, null

AU - La Mattina, Daniela

AU - Misso, null

PY - 2006

Y1 - 2006

N2 - We classify, up to PI-equivalence, the superalgebras over a field of characteristic zero whose sequence of codimensions is linearly bounded. As a consequence we determine the linear functions describing the graded codimensions of a superalgebra.

AB - We classify, up to PI-equivalence, the superalgebras over a field of characteristic zero whose sequence of codimensions is linearly bounded. As a consequence we determine the linear functions describing the graded codimensions of a superalgebra.

UR - http://hdl.handle.net/10447/28804

M3 - Article

VL - 207

SP - 215

EP - 240

JO - Journal of Pure and Applied Algebra

JF - Journal of Pure and Applied Algebra

SN - 0022-4049

ER -