TY - CONF
T1 - Polarization types of isogenous Prym-Tyurin varieties
AU - Kanev, Vassil
PY - 2008
Y1 - 2008
N2 - Let p:C-->Y be a covering of smooth, projective curves which is a composition of \pi:C-->C'' of degree 2 and g:C''-->Y of degree n. Let f:X-->Y be the covering of degree 2^n, where the curve X parametrizes the liftings in C^{(n)} of the fibers of g:C''-->Y. Let P(X,\delta) be the associated Prym-Tyurin variety, known to be isogenous to the Prym variety P(C,C''). Most of the results in the paper focus on calculating the polarization type of the restriction of the canonical polarization of JX on P(X,\delta). We obtain the polarization type when n=3. When Y=P^1 we conjecture that P(X,\delta) is isomorphic to the dual of the Prym variety P(C,C''). This was known when n=2, we prove it when n=3, and for arbitrary n if \pi:C-->C'' is \''{e}tale. Similar results are obtained for some other types of coverings.
AB - Let p:C-->Y be a covering of smooth, projective curves which is a composition of \pi:C-->C'' of degree 2 and g:C''-->Y of degree n. Let f:X-->Y be the covering of degree 2^n, where the curve X parametrizes the liftings in C^{(n)} of the fibers of g:C''-->Y. Let P(X,\delta) be the associated Prym-Tyurin variety, known to be isogenous to the Prym variety P(C,C''). Most of the results in the paper focus on calculating the polarization type of the restriction of the canonical polarization of JX on P(X,\delta). We obtain the polarization type when n=3. When Y=P^1 we conjecture that P(X,\delta) is isomorphic to the dual of the Prym variety P(C,C''). This was known when n=2, we prove it when n=3, and for arbitrary n if \pi:C-->C'' is \''{e}tale. Similar results are obtained for some other types of coverings.
KW - Prym varieties
KW - Prym-Tyurin varieties
KW - isogeny
KW - polarization type
KW - Prym varieties
KW - Prym-Tyurin varieties
KW - isogeny
KW - polarization type
UR - http://hdl.handle.net/10447/40213
UR - http://arxiv.org/abs/0707.0364
M3 - Other
SP - 147
EP - 174
ER -