Phonon-induced spin depolarization of conduction electrons in silicon crystals

Risultato della ricerca: Other contribution

Abstract

In last decade the process of spin relaxation of conduction electrons in semiconductor structures has been widely investigated, in order to use spin polarization as information carrier [1]. However, each initial non-equilibrium orientation decays over time during the transport. Thus, to make feasible the implementation of spin-based electronic devices, the features of spin relaxation at relatively high temperatures, jointly with the influence of transport conditions, should be fully understood [1]. Electrical injection of spin polarization in silicon structures up to room temperature has been experimentally carried out [2]. Despite these promising experimental results, a comprehensive theoretical framework accounting for the spin depolarization process in silicon crystals, in a wide range of temperature values, doping concentration, and amplitude of external fields, is still in a developing stage [3-4]. Here, by using a semiclassical multiparticle Monte Carlo (MC) approach, we simulate spin transport in lightly doped n-type Si samples and calculate the spin lifetimes of conduction electrons. Spin flipping is taken into account through the Elliot-Yafet mechanism, which is dominant in group IV materials.
Lingua originaleEnglish
Numero di pagine2
Stato di pubblicazionePublished - 2014

Fingerprint

depolarization
conduction electrons
silicon
crystals
polarization
injection
life (durability)
decay
room temperature
electronics

Cita questo

@misc{5088de0a43d94c1c91032cad9d31819a,
title = "Phonon-induced spin depolarization of conduction electrons in silicon crystals",
abstract = "In last decade the process of spin relaxation of conduction electrons in semiconductor structures has been widely investigated, in order to use spin polarization as information carrier [1]. However, each initial non-equilibrium orientation decays over time during the transport. Thus, to make feasible the implementation of spin-based electronic devices, the features of spin relaxation at relatively high temperatures, jointly with the influence of transport conditions, should be fully understood [1]. Electrical injection of spin polarization in silicon structures up to room temperature has been experimentally carried out [2]. Despite these promising experimental results, a comprehensive theoretical framework accounting for the spin depolarization process in silicon crystals, in a wide range of temperature values, doping concentration, and amplitude of external fields, is still in a developing stage [3-4]. Here, by using a semiclassical multiparticle Monte Carlo (MC) approach, we simulate spin transport in lightly doped n-type Si samples and calculate the spin lifetimes of conduction electrons. Spin flipping is taken into account through the Elliot-Yafet mechanism, which is dominant in group IV materials.",
keywords = "Monte Carlo simulation, Silicon crystals, Spintronics",
author = "{Persano Adorno}, Dominique and Nicola Pizzolato",
year = "2014",
language = "English",
isbn = "978-2-9547858-0-6",
type = "Other",

}

TY - GEN

T1 - Phonon-induced spin depolarization of conduction electrons in silicon crystals

AU - Persano Adorno, Dominique

AU - Pizzolato, Nicola

PY - 2014

Y1 - 2014

N2 - In last decade the process of spin relaxation of conduction electrons in semiconductor structures has been widely investigated, in order to use spin polarization as information carrier [1]. However, each initial non-equilibrium orientation decays over time during the transport. Thus, to make feasible the implementation of spin-based electronic devices, the features of spin relaxation at relatively high temperatures, jointly with the influence of transport conditions, should be fully understood [1]. Electrical injection of spin polarization in silicon structures up to room temperature has been experimentally carried out [2]. Despite these promising experimental results, a comprehensive theoretical framework accounting for the spin depolarization process in silicon crystals, in a wide range of temperature values, doping concentration, and amplitude of external fields, is still in a developing stage [3-4]. Here, by using a semiclassical multiparticle Monte Carlo (MC) approach, we simulate spin transport in lightly doped n-type Si samples and calculate the spin lifetimes of conduction electrons. Spin flipping is taken into account through the Elliot-Yafet mechanism, which is dominant in group IV materials.

AB - In last decade the process of spin relaxation of conduction electrons in semiconductor structures has been widely investigated, in order to use spin polarization as information carrier [1]. However, each initial non-equilibrium orientation decays over time during the transport. Thus, to make feasible the implementation of spin-based electronic devices, the features of spin relaxation at relatively high temperatures, jointly with the influence of transport conditions, should be fully understood [1]. Electrical injection of spin polarization in silicon structures up to room temperature has been experimentally carried out [2]. Despite these promising experimental results, a comprehensive theoretical framework accounting for the spin depolarization process in silicon crystals, in a wide range of temperature values, doping concentration, and amplitude of external fields, is still in a developing stage [3-4]. Here, by using a semiclassical multiparticle Monte Carlo (MC) approach, we simulate spin transport in lightly doped n-type Si samples and calculate the spin lifetimes of conduction electrons. Spin flipping is taken into account through the Elliot-Yafet mechanism, which is dominant in group IV materials.

KW - Monte Carlo simulation

KW - Silicon crystals

KW - Spintronics

UR - http://hdl.handle.net/10447/98140

M3 - Other contribution

SN - 978-2-9547858-0-6

ER -