Abstract

One of most important features that a material should have in order to be utilized for tissue engineering applications is its biocompatibility and its chemical surface. These properties are required for a high degree of cell adhesion on the scaffold. Poly‐L‐lactid acid (PLLA) is a biocompatible synthetic polymer approved by the Food and Drug Administration for human clinical applications. It has been largely employed, in the last years, as a constituent of surgical and implantable devices. PHEA is a biocompatible water‐soluble synthetic polymer, with a protein‐like structure, whose use as a drug carrier and as starting material for many other biomedical and pharmaceutical applications has been reported in the literature. In this work a copolymer (PHEA‐PLLA) of the aforementioned polymers was synthesized and characterized the possibility to produce porous scaffolds with it was assessed. The results have shown that is possible to prepare scaffolds of PHEA‐PLLA via Thermally Induced Phase Separation (TIPS). The scaffolds as‐obtained present on theirs bulk an open porous structure with interconnected pores whose average pore size was ∼ 20 μm. Moreover a cloud point curve for the system PHEA‐PLLA∕Dioxane∕water was built in order to find the more appropriate temperatures for the TIPS process.
Lingua originaleEnglish
Titolo della pubblicazione ospiteTHE 14TH INTERNATIONAL CONFERENCE ON MATERIAL FORMING ESAFORM 2011 PROCEEDINGS
Pagine809-814
Numero di pagine6
Stato di pubblicazionePublished - 2011

Serie di pubblicazioni

NomeAIP CONFERENCE PROCEEDINGS

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Ecology
  • Plant Science
  • ???subjectarea.asjc.3100.3100???
  • Nature and Landscape Conservation

Fingerprint Entra nei temi di ricerca di 'PHEA‐PLLA: A New Polymer Blend For Tissue Engineering Applications'. Insieme formano una fingerprint unica.

Cita questo