Phase equilibria of Pantelleria trachytes (Italy): constraints on pre-eruptive conditions3 and on the metaluminous to peralkaline transition in silicic magmas.

Ida Di Carlo, Silvio Giuseppe Rotolo, Pierangelo Romano, Ida Di Carlo, Joan Andújar, Silvio G. Rotolo, Bruno Scaillet, Nunzia Romengo

Risultato della ricerca: Article

3 Citazioni (Scopus)

Abstract

Pantelleria Island is the type locality of pantellerite, an iron and alkali-rich rhyolite(P.I=molar Na2O+K2O/Al2O3 >1.05). Peralkaline rhyolites (i.e pantellerite and comendite) and trachytes usually represent the felsic end-members in continental rift systems (e.g.,Pantelleria, Tibesti, Ethiopia, Afar, Kenya, Bain and Range, South Greenland) and in oceanicsland settings (Socorro Is., Easter Is., Iceland and Azores). The origin of peralkaline rhyolites in the different tectonic settings is still a matter of debate and three hypotheses have beensuggested: (a) crystal fractionation of alkali-basalt in a shallow reservoir to produce a trachytewhich subsequently gives rise to a pantellerite (e.g., Barberi et al., 1975, Mungall & Martin1995, Civetta et al., 1998,) (b) partial melting of cumulate gabbros to form a trachyte whichthen produces pantellerite (e.g., Lowestern & Mahood 1991; Bohrson & Reid 1997), (c)partial melting of different lithospheric sources fluxed by volatiles which add the excess alkalies to the melt (Bailey & Macdonald, 1975, 1987). Recent petrological work has helped to define the temperature range and redox conditions of pantellerite magmas (Scaillet &Macdonald 2001, 2003, 2006; White et al., 2005, 2009; Di Carlo et al., 2010,) as well as theirpre-eruptive volatile contents (e.g., Gioncada & Landi 2010, Neave et al., 2012, Lanzo et al., 2013). In contrast little is known about the conditions of storage and evolution of the associated trachytes. At Pantelleria, trachytes and pantellerites constitute most of theoutcropping rocks, the former being erupted dominantly as lava flows while pantellerites are erupted either explosively or effusively. We have experimentally investigated the phase relationship of two representativetrachytes from Pantelleria island in order to shed light on their pre-eruptive conditions(pressure, temperature, H2Omelt, oxygen fugacity) and define their liquid lines of descent toward more evolved compositions. We have established the phase relationships over a P-TfO2-H2Omelt range of T=750-950°C, P=0.5-1.5 kbar, fO2=~FMQ and XH2Ofluid (H2O/H2O+CO2, in moles) between 1 and 0. By comparing the experimental phaseassemblages, abundances and compositions with the natural products we set constraints on thestorage conditions of trachytic magmas at Pantelleria and more generally, on the putativeparent-daughter relationship between trachytic and pantelleritic magmas. Our results lay thebasis to understand the long debated petrological issue regarding the link 94 between silica oversaturated peralkaline and metaluminous magmas.
Lingua originaleEnglish
pagine (da-a)559-588
Numero di pagine29
RivistaDefault journal
Volume59
Stato di pubblicazionePublished - 2018

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Geochemistry and Petrology

Cita questo

Phase equilibria of Pantelleria trachytes (Italy): constraints on pre-eruptive conditions3 and on the metaluminous to peralkaline transition in silicic magmas. / Di Carlo, Ida; Rotolo, Silvio Giuseppe; Romano, Pierangelo; Di Carlo, Ida; Andújar, Joan; Rotolo, Silvio G.; Scaillet, Bruno; Romengo, Nunzia.

In: Default journal, Vol. 59, 2018, pag. 559-588.

Risultato della ricerca: Article

@article{2f2dcb54ccc2402a8e6daefdce66d89a,
title = "Phase equilibria of Pantelleria trachytes (Italy): constraints on pre-eruptive conditions3 and on the metaluminous to peralkaline transition in silicic magmas.",
abstract = "Pantelleria Island is the type locality of pantellerite, an iron and alkali-rich rhyolite(P.I=molar Na2O+K2O/Al2O3 >1.05). Peralkaline rhyolites (i.e pantellerite and comendite) and trachytes usually represent the felsic end-members in continental rift systems (e.g.,Pantelleria, Tibesti, Ethiopia, Afar, Kenya, Bain and Range, South Greenland) and in oceanicsland settings (Socorro Is., Easter Is., Iceland and Azores). The origin of peralkaline rhyolites in the different tectonic settings is still a matter of debate and three hypotheses have beensuggested: (a) crystal fractionation of alkali-basalt in a shallow reservoir to produce a trachytewhich subsequently gives rise to a pantellerite (e.g., Barberi et al., 1975, Mungall & Martin1995, Civetta et al., 1998,) (b) partial melting of cumulate gabbros to form a trachyte whichthen produces pantellerite (e.g., Lowestern & Mahood 1991; Bohrson & Reid 1997), (c)partial melting of different lithospheric sources fluxed by volatiles which add the excess alkalies to the melt (Bailey & Macdonald, 1975, 1987). Recent petrological work has helped to define the temperature range and redox conditions of pantellerite magmas (Scaillet &Macdonald 2001, 2003, 2006; White et al., 2005, 2009; Di Carlo et al., 2010,) as well as theirpre-eruptive volatile contents (e.g., Gioncada & Landi 2010, Neave et al., 2012, Lanzo et al., 2013). In contrast little is known about the conditions of storage and evolution of the associated trachytes. At Pantelleria, trachytes and pantellerites constitute most of theoutcropping rocks, the former being erupted dominantly as lava flows while pantellerites are erupted either explosively or effusively. We have experimentally investigated the phase relationship of two representativetrachytes from Pantelleria island in order to shed light on their pre-eruptive conditions(pressure, temperature, H2Omelt, oxygen fugacity) and define their liquid lines of descent toward more evolved compositions. We have established the phase relationships over a P-TfO2-H2Omelt range of T=750-950°C, P=0.5-1.5 kbar, fO2=~FMQ and XH2Ofluid (H2O/H2O+CO2, in moles) between 1 and 0. By comparing the experimental phaseassemblages, abundances and compositions with the natural products we set constraints on thestorage conditions of trachytic magmas at Pantelleria and more generally, on the putativeparent-daughter relationship between trachytic and pantelleritic magmas. Our results lay thebasis to understand the long debated petrological issue regarding the link 94 between silica oversaturated peralkaline and metaluminous magmas.",
author = "{Di Carlo}, Ida and Rotolo, {Silvio Giuseppe} and Pierangelo Romano and {Di Carlo}, Ida and Joan And{\'u}jar and Rotolo, {Silvio G.} and Bruno Scaillet and Nunzia Romengo",
year = "2018",
language = "English",
volume = "59",
pages = "559--588",
journal = "Default journal",

}

TY - JOUR

T1 - Phase equilibria of Pantelleria trachytes (Italy): constraints on pre-eruptive conditions3 and on the metaluminous to peralkaline transition in silicic magmas.

AU - Di Carlo, Ida

AU - Rotolo, Silvio Giuseppe

AU - Romano, Pierangelo

AU - Di Carlo, Ida

AU - Andújar, Joan

AU - Rotolo, Silvio G.

AU - Scaillet, Bruno

AU - Romengo, Nunzia

PY - 2018

Y1 - 2018

N2 - Pantelleria Island is the type locality of pantellerite, an iron and alkali-rich rhyolite(P.I=molar Na2O+K2O/Al2O3 >1.05). Peralkaline rhyolites (i.e pantellerite and comendite) and trachytes usually represent the felsic end-members in continental rift systems (e.g.,Pantelleria, Tibesti, Ethiopia, Afar, Kenya, Bain and Range, South Greenland) and in oceanicsland settings (Socorro Is., Easter Is., Iceland and Azores). The origin of peralkaline rhyolites in the different tectonic settings is still a matter of debate and three hypotheses have beensuggested: (a) crystal fractionation of alkali-basalt in a shallow reservoir to produce a trachytewhich subsequently gives rise to a pantellerite (e.g., Barberi et al., 1975, Mungall & Martin1995, Civetta et al., 1998,) (b) partial melting of cumulate gabbros to form a trachyte whichthen produces pantellerite (e.g., Lowestern & Mahood 1991; Bohrson & Reid 1997), (c)partial melting of different lithospheric sources fluxed by volatiles which add the excess alkalies to the melt (Bailey & Macdonald, 1975, 1987). Recent petrological work has helped to define the temperature range and redox conditions of pantellerite magmas (Scaillet &Macdonald 2001, 2003, 2006; White et al., 2005, 2009; Di Carlo et al., 2010,) as well as theirpre-eruptive volatile contents (e.g., Gioncada & Landi 2010, Neave et al., 2012, Lanzo et al., 2013). In contrast little is known about the conditions of storage and evolution of the associated trachytes. At Pantelleria, trachytes and pantellerites constitute most of theoutcropping rocks, the former being erupted dominantly as lava flows while pantellerites are erupted either explosively or effusively. We have experimentally investigated the phase relationship of two representativetrachytes from Pantelleria island in order to shed light on their pre-eruptive conditions(pressure, temperature, H2Omelt, oxygen fugacity) and define their liquid lines of descent toward more evolved compositions. We have established the phase relationships over a P-TfO2-H2Omelt range of T=750-950°C, P=0.5-1.5 kbar, fO2=~FMQ and XH2Ofluid (H2O/H2O+CO2, in moles) between 1 and 0. By comparing the experimental phaseassemblages, abundances and compositions with the natural products we set constraints on thestorage conditions of trachytic magmas at Pantelleria and more generally, on the putativeparent-daughter relationship between trachytic and pantelleritic magmas. Our results lay thebasis to understand the long debated petrological issue regarding the link 94 between silica oversaturated peralkaline and metaluminous magmas.

AB - Pantelleria Island is the type locality of pantellerite, an iron and alkali-rich rhyolite(P.I=molar Na2O+K2O/Al2O3 >1.05). Peralkaline rhyolites (i.e pantellerite and comendite) and trachytes usually represent the felsic end-members in continental rift systems (e.g.,Pantelleria, Tibesti, Ethiopia, Afar, Kenya, Bain and Range, South Greenland) and in oceanicsland settings (Socorro Is., Easter Is., Iceland and Azores). The origin of peralkaline rhyolites in the different tectonic settings is still a matter of debate and three hypotheses have beensuggested: (a) crystal fractionation of alkali-basalt in a shallow reservoir to produce a trachytewhich subsequently gives rise to a pantellerite (e.g., Barberi et al., 1975, Mungall & Martin1995, Civetta et al., 1998,) (b) partial melting of cumulate gabbros to form a trachyte whichthen produces pantellerite (e.g., Lowestern & Mahood 1991; Bohrson & Reid 1997), (c)partial melting of different lithospheric sources fluxed by volatiles which add the excess alkalies to the melt (Bailey & Macdonald, 1975, 1987). Recent petrological work has helped to define the temperature range and redox conditions of pantellerite magmas (Scaillet &Macdonald 2001, 2003, 2006; White et al., 2005, 2009; Di Carlo et al., 2010,) as well as theirpre-eruptive volatile contents (e.g., Gioncada & Landi 2010, Neave et al., 2012, Lanzo et al., 2013). In contrast little is known about the conditions of storage and evolution of the associated trachytes. At Pantelleria, trachytes and pantellerites constitute most of theoutcropping rocks, the former being erupted dominantly as lava flows while pantellerites are erupted either explosively or effusively. We have experimentally investigated the phase relationship of two representativetrachytes from Pantelleria island in order to shed light on their pre-eruptive conditions(pressure, temperature, H2Omelt, oxygen fugacity) and define their liquid lines of descent toward more evolved compositions. We have established the phase relationships over a P-TfO2-H2Omelt range of T=750-950°C, P=0.5-1.5 kbar, fO2=~FMQ and XH2Ofluid (H2O/H2O+CO2, in moles) between 1 and 0. By comparing the experimental phaseassemblages, abundances and compositions with the natural products we set constraints on thestorage conditions of trachytic magmas at Pantelleria and more generally, on the putativeparent-daughter relationship between trachytic and pantelleritic magmas. Our results lay thebasis to understand the long debated petrological issue regarding the link 94 between silica oversaturated peralkaline and metaluminous magmas.

UR - http://hdl.handle.net/10447/282449

M3 - Article

VL - 59

SP - 559

EP - 588

JO - Default journal

JF - Default journal

ER -