Performance of thin-film lithium energy cells under uniaxial pressure

Roberto Scaffaro, Jeff Arias, H. Thomas Hahn, Zhanhu Guo, Tony Pereira, Simon Nieh

Risultato della ricerca: Article

23 Citazioni (Scopus)

Abstract

The objective of this study was two-fold. The first objective was to determine if the all-solid-state thin-film lithium energy cells could withstand the minimal 550 kPa uniaxial pressure required for composite manufacturing, which both specimens successfully did. The second objective was to determine the upper boundary uniaxial pressure limit of operation for the all-solid-state thin-film lithium energy cells. The two all-solid- state thin-film lithium energy cells tested in the present study under uniaxial pressure performed well even when subjected to uniaxial pressures up to about 2.0 MPa. However, pressures higher than this value led to their degradation. The observed degradation was due to the mechanical failure of the sealant. Above this pressure, the sealant was squeezed out of the space between the two mica substrates and the lithium-metal anode layer, which in turn allowed the ambient air to penetrate into the energy cell core, thus leading to the rapid degradation of the charge and discharge performance and the ultimate demise of the energy cell. We found out that, within the observed range, uniformly distributed packaging characteristics, we found that allsolid- state thin-film energy cells charge/discharge cycles under upwardly increasing uniform uniaxial pressure are extraordinarily robust and resilient to the effects of uniaxial, uniformly distributed uniaxial pressure had little or no effect on the charge/discharge performance of the all-solid-state thin-film lithium energy cells. Other power charge/draws outside of 1 mAh were not of interest in this study for the reasons already pointed out, albeit that they may be considered for future studies. Apart from other considerations for failure due to the current and constant power charge/sink of 1mAh. If the overall structure of the energy cell is mechanically robust, i.e., of high structural integrity, the maximum pressure that can be imposed is expected to be much higher than the maximum values noted earlier. The present study indicates that all-solidstate thin-film energy cells can be used as an integral part of a load-bearing multifunctional, smart material structure if their packaging is of sufficiently high structural integrity. Hence, the goal of using fiber reinforced laminated composites as the packaging material for all-solid-state thin-film batteries in multifunctional smart materials structures is well within reach.
Lingua originaleEnglish
pagine (da-a)-
Numero di pagine7
RivistaAdvanced Engineering Materials
Volume10
Stato di pubblicazionePublished - 2008

Fingerprint

Lithium
lithium
Thin films
thin films
cells
solid state
sealers
smart materials
Intelligent materials
degradation
energy
Sealants
Structural integrity
integrity
Degradation
Bearings (structural)
fiber composites
sinks
mica
packaging

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics

Cita questo

Scaffaro, R., Arias, J., Hahn, H. T., Guo, Z., Pereira, T., & Nieh, S. (2008). Performance of thin-film lithium energy cells under uniaxial pressure. Advanced Engineering Materials, 10, -.

Performance of thin-film lithium energy cells under uniaxial pressure. / Scaffaro, Roberto; Arias, Jeff; Hahn, H. Thomas; Guo, Zhanhu; Pereira, Tony; Nieh, Simon.

In: Advanced Engineering Materials, Vol. 10, 2008, pag. -.

Risultato della ricerca: Article

Scaffaro, R, Arias, J, Hahn, HT, Guo, Z, Pereira, T & Nieh, S 2008, 'Performance of thin-film lithium energy cells under uniaxial pressure', Advanced Engineering Materials, vol. 10, pagg. -.
Scaffaro, Roberto ; Arias, Jeff ; Hahn, H. Thomas ; Guo, Zhanhu ; Pereira, Tony ; Nieh, Simon. / Performance of thin-film lithium energy cells under uniaxial pressure. In: Advanced Engineering Materials. 2008 ; Vol. 10. pagg. -.
@article{bb69816f49194dbf9563b03957a94be6,
title = "Performance of thin-film lithium energy cells under uniaxial pressure",
abstract = "The objective of this study was two-fold. The first objective was to determine if the all-solid-state thin-film lithium energy cells could withstand the minimal 550 kPa uniaxial pressure required for composite manufacturing, which both specimens successfully did. The second objective was to determine the upper boundary uniaxial pressure limit of operation for the all-solid-state thin-film lithium energy cells. The two all-solid- state thin-film lithium energy cells tested in the present study under uniaxial pressure performed well even when subjected to uniaxial pressures up to about 2.0 MPa. However, pressures higher than this value led to their degradation. The observed degradation was due to the mechanical failure of the sealant. Above this pressure, the sealant was squeezed out of the space between the two mica substrates and the lithium-metal anode layer, which in turn allowed the ambient air to penetrate into the energy cell core, thus leading to the rapid degradation of the charge and discharge performance and the ultimate demise of the energy cell. We found out that, within the observed range, uniformly distributed packaging characteristics, we found that allsolid- state thin-film energy cells charge/discharge cycles under upwardly increasing uniform uniaxial pressure are extraordinarily robust and resilient to the effects of uniaxial, uniformly distributed uniaxial pressure had little or no effect on the charge/discharge performance of the all-solid-state thin-film lithium energy cells. Other power charge/draws outside of 1 mAh were not of interest in this study for the reasons already pointed out, albeit that they may be considered for future studies. Apart from other considerations for failure due to the current and constant power charge/sink of 1mAh. If the overall structure of the energy cell is mechanically robust, i.e., of high structural integrity, the maximum pressure that can be imposed is expected to be much higher than the maximum values noted earlier. The present study indicates that all-solidstate thin-film energy cells can be used as an integral part of a load-bearing multifunctional, smart material structure if their packaging is of sufficiently high structural integrity. Hence, the goal of using fiber reinforced laminated composites as the packaging material for all-solid-state thin-film batteries in multifunctional smart materials structures is well within reach.",
keywords = "thin film batteries, mechanical performance",
author = "Roberto Scaffaro and Jeff Arias and Hahn, {H. Thomas} and Zhanhu Guo and Tony Pereira and Simon Nieh",
year = "2008",
language = "English",
volume = "10",
pages = "--",
journal = "Advanced Engineering Materials",
issn = "1438-1656",
publisher = "Wiley-VCH Verlag",

}

TY - JOUR

T1 - Performance of thin-film lithium energy cells under uniaxial pressure

AU - Scaffaro, Roberto

AU - Arias, Jeff

AU - Hahn, H. Thomas

AU - Guo, Zhanhu

AU - Pereira, Tony

AU - Nieh, Simon

PY - 2008

Y1 - 2008

N2 - The objective of this study was two-fold. The first objective was to determine if the all-solid-state thin-film lithium energy cells could withstand the minimal 550 kPa uniaxial pressure required for composite manufacturing, which both specimens successfully did. The second objective was to determine the upper boundary uniaxial pressure limit of operation for the all-solid-state thin-film lithium energy cells. The two all-solid- state thin-film lithium energy cells tested in the present study under uniaxial pressure performed well even when subjected to uniaxial pressures up to about 2.0 MPa. However, pressures higher than this value led to their degradation. The observed degradation was due to the mechanical failure of the sealant. Above this pressure, the sealant was squeezed out of the space between the two mica substrates and the lithium-metal anode layer, which in turn allowed the ambient air to penetrate into the energy cell core, thus leading to the rapid degradation of the charge and discharge performance and the ultimate demise of the energy cell. We found out that, within the observed range, uniformly distributed packaging characteristics, we found that allsolid- state thin-film energy cells charge/discharge cycles under upwardly increasing uniform uniaxial pressure are extraordinarily robust and resilient to the effects of uniaxial, uniformly distributed uniaxial pressure had little or no effect on the charge/discharge performance of the all-solid-state thin-film lithium energy cells. Other power charge/draws outside of 1 mAh were not of interest in this study for the reasons already pointed out, albeit that they may be considered for future studies. Apart from other considerations for failure due to the current and constant power charge/sink of 1mAh. If the overall structure of the energy cell is mechanically robust, i.e., of high structural integrity, the maximum pressure that can be imposed is expected to be much higher than the maximum values noted earlier. The present study indicates that all-solidstate thin-film energy cells can be used as an integral part of a load-bearing multifunctional, smart material structure if their packaging is of sufficiently high structural integrity. Hence, the goal of using fiber reinforced laminated composites as the packaging material for all-solid-state thin-film batteries in multifunctional smart materials structures is well within reach.

AB - The objective of this study was two-fold. The first objective was to determine if the all-solid-state thin-film lithium energy cells could withstand the minimal 550 kPa uniaxial pressure required for composite manufacturing, which both specimens successfully did. The second objective was to determine the upper boundary uniaxial pressure limit of operation for the all-solid-state thin-film lithium energy cells. The two all-solid- state thin-film lithium energy cells tested in the present study under uniaxial pressure performed well even when subjected to uniaxial pressures up to about 2.0 MPa. However, pressures higher than this value led to their degradation. The observed degradation was due to the mechanical failure of the sealant. Above this pressure, the sealant was squeezed out of the space between the two mica substrates and the lithium-metal anode layer, which in turn allowed the ambient air to penetrate into the energy cell core, thus leading to the rapid degradation of the charge and discharge performance and the ultimate demise of the energy cell. We found out that, within the observed range, uniformly distributed packaging characteristics, we found that allsolid- state thin-film energy cells charge/discharge cycles under upwardly increasing uniform uniaxial pressure are extraordinarily robust and resilient to the effects of uniaxial, uniformly distributed uniaxial pressure had little or no effect on the charge/discharge performance of the all-solid-state thin-film lithium energy cells. Other power charge/draws outside of 1 mAh were not of interest in this study for the reasons already pointed out, albeit that they may be considered for future studies. Apart from other considerations for failure due to the current and constant power charge/sink of 1mAh. If the overall structure of the energy cell is mechanically robust, i.e., of high structural integrity, the maximum pressure that can be imposed is expected to be much higher than the maximum values noted earlier. The present study indicates that all-solidstate thin-film energy cells can be used as an integral part of a load-bearing multifunctional, smart material structure if their packaging is of sufficiently high structural integrity. Hence, the goal of using fiber reinforced laminated composites as the packaging material for all-solid-state thin-film batteries in multifunctional smart materials structures is well within reach.

KW - thin film batteries, mechanical performance

UR - http://hdl.handle.net/10447/48065

M3 - Article

VL - 10

SP - -

JO - Advanced Engineering Materials

JF - Advanced Engineering Materials

SN - 1438-1656

ER -