Pattern selection in the 2D FitzHugh–Nagumo model

Risultato della ricerca: Articlepeer review

4 Citazioni (Scopus)

Abstract

We construct square and target patterns solutions of the FitzHugh–Nagumo reaction–diffusion system on planar bounded domains. We study the existence and stability of stationary square and super-square patterns by performing a close to equilibrium asymptotic weakly nonlinear expansion: the emergence of these patterns is shown to occur when the bifurcation takes place through a multiplicity-two eigenvalue without resonance. The system is also shown to support the formation of axisymmetric target patterns whose amplitude equation is derived close to the bifurcation threshold. We present several numerical simulations validating the theoretical results.
Lingua originaleEnglish
pagine (da-a)535-549
Numero di pagine15
RivistaRicerche di Matematica
Volume68
Stato di pubblicazionePublished - 2019

All Science Journal Classification (ASJC) codes

  • Mathematics(all)
  • Applied Mathematics

Fingerprint Entra nei temi di ricerca di 'Pattern selection in the 2D FitzHugh–Nagumo model'. Insieme formano una fingerprint unica.

Cita questo