Partial inner product spaces, metric operators and generalized hermiticity

Camillo Trapani, Jean-Pierre Antoine

Risultato della ricerca: Articlepeer review

13 Citazioni (Scopus)

Abstract

Motivated by the recent developments of pseudo-Hermitian quantummechanics, we analyze the structure of unbounded metric operators in a Hilbertspace. It turns out that such operators generate a canonical lattice of Hilbertspaces, that is, the simplest case of a partial inner product space (PIP-space).Next, we introduce several generalizations of the notion of similarity betweenoperators and explore to what extent they preserve spectral properties. Then weapply some of the previous results to operators on a particular PIP-space, namelya scale of Hilbert spaces generated by ametric operator. Finally, we reformulatethe notion of pseudo-Hermitian operators in the preceding formalism.
Lingua originaleEnglish
Numero di pagine21
RivistaJOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL
Volume46
Stato di pubblicazionePublished - 2013

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.3100.3109???
  • ???subjectarea.asjc.2600.2613???
  • ???subjectarea.asjc.2600.2611???
  • ???subjectarea.asjc.2600.2610???
  • ???subjectarea.asjc.3100.3100???

Fingerprint

Entra nei temi di ricerca di 'Partial inner product spaces, metric operators and generalized hermiticity'. Insieme formano una fingerprint unica.

Cita questo