p14(ARF) Prevents Proliferation of Aneuploid Cells by Inducing p53-Dependent Apoptosis

Risultato della ricerca: Article

2 Citazioni (Scopus)

Abstract

Weakening the Spindle Assembly Checkpoint by reduced expression of its components induces chromosome instability and aneuploidy that are hallmarks of cancer cells. The tumor suppressor p14(ARF) is overexpressed in response to oncogenic stimuli to stabilize p53 halting cell progression. Previously, we found that lack or reduced expression of p14(ARF) is involved in the maintenance of aneuploid cells in primary human cells, suggesting that it could be part of a pathway controlling their proliferation. To investigate this aspect further, p14(ARF) was ectopically expressed in HCT116 cells after depletion of the Spindle Assembly Checkpoint MAD2 protein that was used as a trigger for aneuploidy. p14(ARF) Re-expression reduced the number of aneuploid cells in MAD2 post-transcriptionally silenced cells. Also aberrant mitoses, frequently displayed in MAD2-depleted cells, were decreased when p14(ARF) was expressed at the same time. In addition, p14(ARF) ectopic expression in MAD2-depleted cells induced apoptosis associated with increased p53 protein levels. Conversely, p14(ARF) ectopic expression did not induce apoptosis in HCT116 p53KO cells. Collectively, our results suggest that the tumor suppressor p14(ARF) may have an important role in counteracting proliferation of aneuploid cells by activating p53-dependent apoptosis.
Lingua originaleEnglish
pagine (da-a)336-344
Numero di pagine9
RivistaJournal of Cellular Physiology
Volume231
Stato di pubblicazionePublished - 2016

Fingerprint

Tumor Suppressor Protein p14ARF
Aneuploidy
Apoptosis
M Phase Cell Cycle Checkpoints
HCT116 Cells
Tumors
Cells
Neoplasms
Chromosomal Instability
Chromosomes
Mitosis
Proteins
Maintenance

All Science Journal Classification (ASJC) codes

  • Physiology
  • Cell Biology
  • Clinical Biochemistry

Cita questo

@article{5d5f7a3b1c5048829a2e1d209afa8b9f,
title = "p14(ARF) Prevents Proliferation of Aneuploid Cells by Inducing p53-Dependent Apoptosis",
abstract = "Weakening the Spindle Assembly Checkpoint by reduced expression of its components induces chromosome instability and aneuploidy that are hallmarks of cancer cells. The tumor suppressor p14(ARF) is overexpressed in response to oncogenic stimuli to stabilize p53 halting cell progression. Previously, we found that lack or reduced expression of p14(ARF) is involved in the maintenance of aneuploid cells in primary human cells, suggesting that it could be part of a pathway controlling their proliferation. To investigate this aspect further, p14(ARF) was ectopically expressed in HCT116 cells after depletion of the Spindle Assembly Checkpoint MAD2 protein that was used as a trigger for aneuploidy. p14(ARF) Re-expression reduced the number of aneuploid cells in MAD2 post-transcriptionally silenced cells. Also aberrant mitoses, frequently displayed in MAD2-depleted cells, were decreased when p14(ARF) was expressed at the same time. In addition, p14(ARF) ectopic expression in MAD2-depleted cells induced apoptosis associated with increased p53 protein levels. Conversely, p14(ARF) ectopic expression did not induce apoptosis in HCT116 p53KO cells. Collectively, our results suggest that the tumor suppressor p14(ARF) may have an important role in counteracting proliferation of aneuploid cells by activating p53-dependent apoptosis.",
author = "{Di Leonardo}, Aldo and Laura Lentini and Lorena Veneziano and {Di Leonardo}, Aldo",
year = "2016",
language = "English",
volume = "231",
pages = "336--344",
journal = "Journal of Cellular Physiology",
issn = "0021-9541",
publisher = "Wiley-Liss Inc.",

}

TY - JOUR

T1 - p14(ARF) Prevents Proliferation of Aneuploid Cells by Inducing p53-Dependent Apoptosis

AU - Di Leonardo, Aldo

AU - Lentini, Laura

AU - Veneziano, Lorena

AU - Di Leonardo, Aldo

PY - 2016

Y1 - 2016

N2 - Weakening the Spindle Assembly Checkpoint by reduced expression of its components induces chromosome instability and aneuploidy that are hallmarks of cancer cells. The tumor suppressor p14(ARF) is overexpressed in response to oncogenic stimuli to stabilize p53 halting cell progression. Previously, we found that lack or reduced expression of p14(ARF) is involved in the maintenance of aneuploid cells in primary human cells, suggesting that it could be part of a pathway controlling their proliferation. To investigate this aspect further, p14(ARF) was ectopically expressed in HCT116 cells after depletion of the Spindle Assembly Checkpoint MAD2 protein that was used as a trigger for aneuploidy. p14(ARF) Re-expression reduced the number of aneuploid cells in MAD2 post-transcriptionally silenced cells. Also aberrant mitoses, frequently displayed in MAD2-depleted cells, were decreased when p14(ARF) was expressed at the same time. In addition, p14(ARF) ectopic expression in MAD2-depleted cells induced apoptosis associated with increased p53 protein levels. Conversely, p14(ARF) ectopic expression did not induce apoptosis in HCT116 p53KO cells. Collectively, our results suggest that the tumor suppressor p14(ARF) may have an important role in counteracting proliferation of aneuploid cells by activating p53-dependent apoptosis.

AB - Weakening the Spindle Assembly Checkpoint by reduced expression of its components induces chromosome instability and aneuploidy that are hallmarks of cancer cells. The tumor suppressor p14(ARF) is overexpressed in response to oncogenic stimuli to stabilize p53 halting cell progression. Previously, we found that lack or reduced expression of p14(ARF) is involved in the maintenance of aneuploid cells in primary human cells, suggesting that it could be part of a pathway controlling their proliferation. To investigate this aspect further, p14(ARF) was ectopically expressed in HCT116 cells after depletion of the Spindle Assembly Checkpoint MAD2 protein that was used as a trigger for aneuploidy. p14(ARF) Re-expression reduced the number of aneuploid cells in MAD2 post-transcriptionally silenced cells. Also aberrant mitoses, frequently displayed in MAD2-depleted cells, were decreased when p14(ARF) was expressed at the same time. In addition, p14(ARF) ectopic expression in MAD2-depleted cells induced apoptosis associated with increased p53 protein levels. Conversely, p14(ARF) ectopic expression did not induce apoptosis in HCT116 p53KO cells. Collectively, our results suggest that the tumor suppressor p14(ARF) may have an important role in counteracting proliferation of aneuploid cells by activating p53-dependent apoptosis.

UR - http://hdl.handle.net/10447/177852

M3 - Article

VL - 231

SP - 336

EP - 344

JO - Journal of Cellular Physiology

JF - Journal of Cellular Physiology

SN - 0021-9541

ER -