Abstract
Let F be a field of characteristic zero and UJ_2(F) be the Jordan algebra of 2x2 upper triangular matrices over F. In this paper we give a complete description of the space of multilinear graded and ordinary identities in the language of Young diagrams through the representation theory of a Young subgroup of S_n. For every Z_2-grading of UJ_2(F) we compute the multiplicities in the graded cocharacter sequence and furthermore we compute the ordinary cocharacter.
Lingua originale | English |
---|---|
pagine (da-a) | 246-259 |
Numero di pagine | 14 |
Rivista | Linear Algebra and Its Applications |
Volume | 451 |
Stato di pubblicazione | Published - 2014 |
All Science Journal Classification (ASJC) codes
- ???subjectarea.asjc.2600.2602???
- ???subjectarea.asjc.2600.2612???
- ???subjectarea.asjc.2600.2608???
- ???subjectarea.asjc.2600.2607???