Optimizing artificial neural networks for the evaluation of asphalt pavement structural performance

Giuseppe Sollazzo, Orazio Pellegrino, Giuseppe Sollazzo, Gaetano Bosurgi

Risultato della ricerca: Article

1 Citazioni (Scopus)

Abstract

Artificial Neural Networks represent useful tools for several engineering issues. Although they were adopted in several pavement-engineering problems for performance evaluation, their application on pavement structural performance evaluation appears to be remarkable. It is conceivable that defining a proper Artificial Neural Network for estimating structural performance in asphalt pavements from measurements performed through quick and economic surveys produces significant savings for road agencies and improves maintenance planning. However, the architecture of such an Artificial Neural Network must be optimised, to improve the final accuracy and provide a reliable technique for enriching decision-making tools. In this paper, the influence on the final quality of different features conditioning the network architecture has been examined, for maximising the resulting quality and, consequently, the final benefits of the methodology. In particular, input factor quality (structural, traffic, climatic), “homogeneity” of training data records and the actual net topology have been investigated. Finally, these results further prove the approach efficiency, for improving Pavement Management Systems and reducing deflection survey frequency, with remarkable savings for road agencies.
Lingua originaleEnglish
pagine (da-a)58-79
Numero di pagine22
RivistaTHE BALTIC JOURNAL OF ROAD AND BRIDGE ENGINEERING
Volume14
Stato di pubblicazionePublished - 2019

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Building and Construction

Fingerprint Entra nei temi di ricerca di 'Optimizing artificial neural networks for the evaluation of asphalt pavement structural performance'. Insieme formano una fingerprint unica.

  • Cita questo