Optimal retraction problem for proper $k$-ball-contractive mappings in $C^m [0,1]$

Trombetta, A.; Trombetta, G.

Risultato della ricerca: Article

Abstract

In this paper for any epsilon > 0 we construct a new proper k-ball-contractive retraction of the closed unit ball of the Banach space C-m[0, 1] onto its boundary with k < 1+epsilon, so that the Wosko constant W-gamma(C-m[0, 1]) is equal to 1.
Lingua originaleEnglish
pagine (da-a)111-125
Numero di pagine15
RivistaTopological Methods in Nonlinear Analysis
Volume53
Stato di pubblicazionePublished - 2019

Cita questo

Optimal retraction problem for proper $k$-ball-contractive mappings in $C^m [0,1]$. / Trombetta, A.; Trombetta, G.

In: Topological Methods in Nonlinear Analysis, Vol. 53, 2019, pag. 111-125.

Risultato della ricerca: Article

@article{01534a6ee3ed4569b6b6d0e951194b07,
title = "Optimal retraction problem for proper $k$-ball-contractive mappings in $C^m [0,1]$",
abstract = "In this paper for any epsilon > 0 we construct a new proper k-ball-contractive retraction of the closed unit ball of the Banach space C-m[0, 1] onto its boundary with k < 1+epsilon, so that the Wosko constant W-gamma(C-m[0, 1]) is equal to 1.",
author = "{Trombetta, A.; Trombetta, G.} and Diana Caponetti",
year = "2019",
language = "English",
volume = "53",
pages = "111--125",
journal = "Topological Methods in Nonlinear Analysis",
issn = "1230-3429",
publisher = "Juliusz Schauder Center",

}

TY - JOUR

T1 - Optimal retraction problem for proper $k$-ball-contractive mappings in $C^m [0,1]$

AU - Trombetta, A.; Trombetta, G.

AU - Caponetti, Diana

PY - 2019

Y1 - 2019

N2 - In this paper for any epsilon > 0 we construct a new proper k-ball-contractive retraction of the closed unit ball of the Banach space C-m[0, 1] onto its boundary with k < 1+epsilon, so that the Wosko constant W-gamma(C-m[0, 1]) is equal to 1.

AB - In this paper for any epsilon > 0 we construct a new proper k-ball-contractive retraction of the closed unit ball of the Banach space C-m[0, 1] onto its boundary with k < 1+epsilon, so that the Wosko constant W-gamma(C-m[0, 1]) is equal to 1.

UR - http://hdl.handle.net/10447/357794

M3 - Article

VL - 53

SP - 111

EP - 125

JO - Topological Methods in Nonlinear Analysis

JF - Topological Methods in Nonlinear Analysis

SN - 1230-3429

ER -