Optimal manufacturing and mechanical characterization of high performance biocomposites reinforced by sisal fibers

Risultato della ricerca: Article

7 Citazioni (Scopus)

Abstract

The increasing interest about eco-sustainable materials in the industrial production (automotive, civil construction, packaging), has led to the increase of the research works dealing with biocomposites. However, until now the most attention has been devoted to the development of short fiber biocomposites for non-structural applications, whereas only a few works have considered high performance biocomposites for structural applications. Consequently, the development of structural biocomposites from robust natural fibers, as sisal fibers, is a result expected from the scientific community, but not yet achieved. In order to give a contribution to the implementation of high performance biocomposites constituted by a green matrix reinforced by sisal fibers, the present work proposes a manufacturing process that allows to obtain good quality unidirectional biocomposites with fiber volume fraction up to 70%. In detail, it uses unidirectional “stitched” fabrics, properly obtained in laboratory from optimized fibers, and a curing under a proper pressure cycle. The comparison with independent data reported in literature, has evidenced how the proposed biocomposites exhibit mechanical properties higher than most of biocomposites described in literature, so that they can advantageously substitute not only materials as steel, aluminum and glass fiber reinforced plastics, but also other biocomposites reinforced by more expensive fibers.
Lingua originaleEnglish
Numero di pagine9
RivistaDefault journal
Volume194
Stato di pubblicazionePublished - 2018

Fingerprint

Fibers
Glass fiber reinforced plastics
Natural fibers
Steel
Aluminum
Curing
Volume fraction
Packaging
Mechanical properties

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Civil and Structural Engineering

Cita questo

@article{467bed6e8e3749ee96f6ffa380d7f5bd,
title = "Optimal manufacturing and mechanical characterization of high performance biocomposites reinforced by sisal fibers",
abstract = "The increasing interest about eco-sustainable materials in the industrial production (automotive, civil construction, packaging), has led to the increase of the research works dealing with biocomposites. However, until now the most attention has been devoted to the development of short fiber biocomposites for non-structural applications, whereas only a few works have considered high performance biocomposites for structural applications. Consequently, the development of structural biocomposites from robust natural fibers, as sisal fibers, is a result expected from the scientific community, but not yet achieved. In order to give a contribution to the implementation of high performance biocomposites constituted by a green matrix reinforced by sisal fibers, the present work proposes a manufacturing process that allows to obtain good quality unidirectional biocomposites with fiber volume fraction up to 70{\%}. In detail, it uses unidirectional “stitched” fabrics, properly obtained in laboratory from optimized fibers, and a curing under a proper pressure cycle. The comparison with independent data reported in literature, has evidenced how the proposed biocomposites exhibit mechanical properties higher than most of biocomposites described in literature, so that they can advantageously substitute not only materials as steel, aluminum and glass fiber reinforced plastics, but also other biocomposites reinforced by more expensive fibers.",
author = "Marannano, {Giuseppe Vincenzo} and Bernardo Zuccarello and Antonio Mancino",
year = "2018",
language = "English",
volume = "194",
journal = "Default journal",

}

TY - JOUR

T1 - Optimal manufacturing and mechanical characterization of high performance biocomposites reinforced by sisal fibers

AU - Marannano, Giuseppe Vincenzo

AU - Zuccarello, Bernardo

AU - Mancino, Antonio

PY - 2018

Y1 - 2018

N2 - The increasing interest about eco-sustainable materials in the industrial production (automotive, civil construction, packaging), has led to the increase of the research works dealing with biocomposites. However, until now the most attention has been devoted to the development of short fiber biocomposites for non-structural applications, whereas only a few works have considered high performance biocomposites for structural applications. Consequently, the development of structural biocomposites from robust natural fibers, as sisal fibers, is a result expected from the scientific community, but not yet achieved. In order to give a contribution to the implementation of high performance biocomposites constituted by a green matrix reinforced by sisal fibers, the present work proposes a manufacturing process that allows to obtain good quality unidirectional biocomposites with fiber volume fraction up to 70%. In detail, it uses unidirectional “stitched” fabrics, properly obtained in laboratory from optimized fibers, and a curing under a proper pressure cycle. The comparison with independent data reported in literature, has evidenced how the proposed biocomposites exhibit mechanical properties higher than most of biocomposites described in literature, so that they can advantageously substitute not only materials as steel, aluminum and glass fiber reinforced plastics, but also other biocomposites reinforced by more expensive fibers.

AB - The increasing interest about eco-sustainable materials in the industrial production (automotive, civil construction, packaging), has led to the increase of the research works dealing with biocomposites. However, until now the most attention has been devoted to the development of short fiber biocomposites for non-structural applications, whereas only a few works have considered high performance biocomposites for structural applications. Consequently, the development of structural biocomposites from robust natural fibers, as sisal fibers, is a result expected from the scientific community, but not yet achieved. In order to give a contribution to the implementation of high performance biocomposites constituted by a green matrix reinforced by sisal fibers, the present work proposes a manufacturing process that allows to obtain good quality unidirectional biocomposites with fiber volume fraction up to 70%. In detail, it uses unidirectional “stitched” fabrics, properly obtained in laboratory from optimized fibers, and a curing under a proper pressure cycle. The comparison with independent data reported in literature, has evidenced how the proposed biocomposites exhibit mechanical properties higher than most of biocomposites described in literature, so that they can advantageously substitute not only materials as steel, aluminum and glass fiber reinforced plastics, but also other biocomposites reinforced by more expensive fibers.

UR - http://hdl.handle.net/10447/288236

UR - https://www.sciencedirect.com/science/article/pii/S0263822317338497

M3 - Article

VL - 194

JO - Default journal

JF - Default journal

ER -